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Abstract

Most multiprocessors are multiprogrammed in order to achieve acceptable response time and to increase their uti-

lization. Unfortunately, inopportune preemption may significantly degrade the performance of synchronized parallel

applications. To address this problem, researchers have developed two principal strategies for concurrent, atomic update

of shared data structures: (1) preemption-safe locking and (2) non-blocking (lock-free) algorithms. Preemption-safe

locking requires kernel support. Non-blocking algorithms generally require a universal atomic primitive such as

compare-and-swap or load-linked/store-conditional, and are widely regarded as inefficient.

We evaluate the performance of preemption-safe lock-based and non-blocking implementations of important data

structures—queues, stacks, heaps, and counters—including non-blocking and lock-based queue algorithms of our

own, in micro-benchmarks and real applications on a 12-processor SGI Challenge multiprocessor. Our results indicate

that our non-blocking queue consistently outperforms the best known alternatives, and that data-structure-specific

non-blocking algorithms, which exist for queues, stacks, and counters, can work extremely well. Not only do they

outperform preemption-safe lock-based algorithms on multiprogrammed machines, they also outperform ordinary

locks on dedicated machines. At the same time, since general-purpose non-blocking techniques do not yet appear

to be practical, preemption-safe locks remain the preferred alternative for complex data structures: they outperform

conventional locks by significant margins on multiprogrammed systems.
�
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1801 (in conjunction with the DARPA Research in Information Science and Technology—High Performance Computing, Software Science and
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1 Introduction

Shared data structures are widely used in parallel applications and multiprocessor operating systems. To ensure

the consistency of these data structures, processes perform synchronized concurrent update operations, mostly using

critical sections protected by mutual exclusion locks. In order to achieve acceptable response time and high utilization,

most multiprocessors are multiprogrammed by time-slicing processors among processes. The performance of mutual

exclusion locks in parallel applications degrades significantly on time-slicing multiprogrammed systems [44] due to

the preemption of processes holding locks. Any other processes busy-waiting on the lock are then unable to perform

useful work until the preempted process is rescheduled and subsequently releases the lock.

Alternative multiprogramming schemes to time-slicing have been proposed in order to avoid the adverse effect of

time-slicing on the performance of synchronization operations. However, each has limited applicability and/or reduces

the utilization of the multiprocessor. Coscheduling [30], ensures that all processes of an application run together.

It has the disadvantage of reducing the utilization of the multiprocessor if applications have a variable amount of

parallelism, or if processes cannot be evenly assigned to time-slices of the multiprocessor. Another alternative is

hardware partitioning, under which no two applications share a processor. However, fixed size partitions have the

disadvantage of resulting in poor response time when the number of processes is larger than the number of processors,

and adjustable size partitions have the disadvantage of requiring applications to be able to adjust their number of

processes as new applications join the system. Otherwise, processes from the same application might have to share the

same processor, allowing one to be preempted while holding a mutual exclusion lock. Traditional time-slicing remains

the most widely used scheme of multiprogramming on multiprocessor systems.

For time-sliced systems, researchers have proposed two principal strategies to avoid inopportune preemption:

preemption safe locking and non-blocking algorithms. Most preemption-safe locking techniques require a widening

of the kernel interface, to facilitate cooperation between the application and the kernel. Generally, these techniques try

either to recover from the preemption of lock-holding processes (or processes waiting on queued locks), or to avoid

preempting processes while holding locks.
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An implementation of a data structure is non-blocking (also known as lock-free) if it guarantees that at least one

process of those trying to concurrently update the data structure will succeed in completing its operation within a

bounded amount of time, assuming that at least one process is active, regardless of the state of other processes.

Non-blocking algorithms do not require any communication with the kernel and by definition they cannot use mutual

exclusion. Rather, they generally rely on hardware support for a universal1 atomic primitive such as compare-and-

swap2 or the pair load-linked and store-conditional,3 while mutual exclusion locks can be implemented

using weaker atomic primitives such as test-and-set, fetch-and-increment, or fetch-and-store.

Few of the above mentioned techniques have been evaluated experimentally, and then only in comparison to

ordinary (preemption-oblivious) mutual exclusion locks. We evaluate the relative performance of preemption-safe

and non-blocking atomic update techniques on multiprogrammed (time-sliced) as well as dedicated multiprocessor

systems. We focus on four important data structures: queues, stacks, heaps, and counters. For queues, we present fast

new non-blocking and lock-based algorithms [28]. Our experimental results, employing both micro-benchmarks and

real applications, on a 12-processor Silicon Graphics Challenge multiprocessor, indicate that our non-blocking queue

algorithm outperforms existing algorithms under almost all circumstances. In general, efficient data-structure-specific

non-blockingalgorithmsoutperform both ordinary and preemption-safe lock-based alternatives, not only on time-sliced

systems, but on dedicated machines as well [29]. At the same time, preemption-safe algorithms outperform ordinary

locks on time-sliced systems, and should therefore be supported by multiprocessor operating systems. We do not

examine general-purpose non-blocking techniques in detail; previous work indicates that they are highly inefficient,

though they provide a level of fault tolerance unavailable with locks. Our contributions include:

� A simple, fast, and practical non-blocking queue algorithm that outperforms all known alternatives, and should

be the algorithm of choice for multiprocessors that support universal atomic primitives.

1Herlihy [12] presented a hierarchy of non-blocking objects that also applies to atomic primitives. A primitive is at level � of the hierarchy
if it can provide a non-blocking solution to a consensus problem for up to � processors. Primitives at higher levels of the hierarchy can provide
non-blocking implementations of those at lower levels, but not conversely. Compare-and-swap and the pair load-linked and store-
conditional are universal primitives as they are at level � of the hierarchy. Widely supported primitives such as test-and-set, fetch-
and-add, and fetch-and-store are at level 2.

2Compare-and-swap, introduced on the IBM System 370, takes as arguments the address of a shared memory location, an expected value,
and a new value. If the shared location currently holds the expected value, it is assigned the new value atomically. A Boolean return value indicates
whether the replacement occurred. Compare-and-swap is supported on the Intel Pentium Pro and Sparc V9 architectures.

3Load-linked and store-conditional, proposed by Jensen et al. [16], must be used together to read, modify, and write a shared
location. Load-linked returns the value stored at the shared location. Store-conditional checks if any other processor has since written
to that location. If not then the location is updated and the operation returns success, otherwise it returns failure. Load-linked/store-
conditional is supported (on bus-based multiprocessors) by the MIPS II, PowerPC, and Alpha architectures.
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� A two-lock queue algorithm that allows one enqueue and one dequeue to proceed concurrently. This algorithm

should be used for heavily contended queues on multiprocessors with non-universal atomic primitives such as

test-and-set or fetch-and-add.

� An evaluation of the performance of non-blocking algorithms in comparison to preemption-safe and ordinary

(preemption-oblivious)locking for queues, stacks, heaps, and counters. The paper demonstrates the superior per-

formance of data-structure-specific non-blocking algorithms on time-slicing as well as dedicated multiprocessor

systems.

The rest of this paper is organized as follows. We discuss preemption-safe locking in Section 2, and non-blocking

algorithms in Section 3. In Section 4, we discuss non-blocking queue algorithms and present two concurrent queue

algorithms of our own. We describe our experimental methodology and results in Section 5. Finally, we summarize

our conclusions and recommendations in Section 6.

2 Preemption-Safe Locking

For simple mutual exclusion locks (e.g. test-and-set), preemption-safe locking techniques allow the system either

to avoid or to recover from the adverse effect of the preemption of processes holding locks. Edler et al.’s Symunix

system [8] employs an avoidance technique: a process may set a flag requesting that the kernel not preempt it because

it is holding a lock. The kernel will honor the request up to a pre-defined time limit, setting a second flag to indicate

that it did so, and deducting any extra execution time from the beginning of the process’s next quantum. A process

should yield the processor if it finds, upon leaving a critical section, that it was granted an extension.

The first-class threads of Marsh et al.’s Psyche system [22] employ a different avoidance technique: they require

the kernel to warn an application process a fixed amount of time in advance of preemption, by setting a flag that is

visible in user space. If a process verifies that the flag is unset before entering a critical section (and if critical sections

are short), then it is guaranteed to be able to complete its operation in the current quantum. If it finds the flag is set, it

can voluntarily yield the processor.

Recovery-based preemption-safe locking techniques include the spin-then-block locks of Ousterhout [30] which let

a waiting process spin for a certain period of time and then—if unsuccessful in entering the critical section—block,

thus minimizing the adverse effect of waiting for a lock held by a descheduled process. Karlin et al. [17] present
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a set of spin-then-block alternatives that adjust the spin time based on past experience. Black’s work on Mach [7]

introduced another recovery technique: a process may suggest to the kernel that it be descheduled in favor of some

specific other process (presumably the one that is holding a desired lock). The scheduler activations of Anderson et

al. [4] also support recovery: when a processor is taken from an application, another processor belonging to the same

application is informed via software interrupt. If the preempted process was holding a lock, the interrupted processor

can perform a context switch to the preempted process and push it through the critical section.

Simple preemption-safe techniques rely on the fact that processes acquire a test-and-set lock in non-

deterministic order. Unfortunately, test-and-set locks do not scale well to large machines. Queue-based

locks scale well, but impose a deterministic order on lock acquisitions, forcing a preemption-safe technique to deal

with preemption not only of the process holding a lock, but of processes waiting in the lock’s queue as well. Preempt-

ing and scheduling processes in an order inconsistent with their order in the lock’s queue can degrade performance

dramatically. Kontothanassis et al. [18] present preemption-safe (or “scheduler-conscious”) versions of the ticket lock,

the MCS lock [25], and Krieger et al.’s reader-writer lock [19]. These algorithms detect the descheduling of critical

processes using handshaking and/or a widened kernel-user interface, and use this information to avoid handing the

lock to a preempted process.

The proposals of Black and of Anderson et al. require the application to recognize the preemption of lock-holding

processes and to deal with the problem. By performing recovery on a processor other than the one on which the

preempted process last ran, they also sacrifice cache footprint. The proposal of Marsh et al. requires the application

to estimate the maximum duration of a critical section, which is not always possible. To represent the preemption-

safe approach in our experiments, we employ test-and-test-and-set locks with exponential backoff, based on the

kernel interface of Edler et al. For machines the size of ours (12 processors), the results of Kontothanassis et al. indicate

that these will out-perform queue-based locks.

3 Non-Blocking Algorithms

Several non-blocking implementations of widely used data structures as well as general methodologies for developing

such implementations systematically have been proposed in the literature. These implementations and methodologies
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were motivated in large part by the performance degradation of mutual exclusion locks as a result of arbitrary process

delays, particularly those due to preemption on a multiprogrammed system.

3.1 General Non-Blocking Methodologies

Herlihy [13] presented a general methodology for transforming sequential implementations of data structures into con-

current non-blocking implementations using compare-and-swap or load-linked/store-conditional.

The basic methodology requires copying the entire data structure on every update. Herlihy also proposed an opti-

mization by which the programmer can avoid some fraction of the copying for certain data structures; he illustrated

this optimization in a non-blocking implementation of a skew-heap-based priority queue. Alemany and Felten [1] and

LaMarca [20] proposed techniques to reduce unnecessary copying and useless parallelism associated with Herlihy’s

methodologies using extra communication between the operating system kernel and application processes. Barnes [6]

presented a general methodology in which processes record and timestamp their modifications to the shared object,

and cooperate whenever conflicts arise. Shavit and Touitou [33] presented software transactional memory, which

implements a
�

-word compare-and-swap using load-linked/store-conditional. Also, Anderson and

Moir [5] presented non-blocking methodologies for large objects that rely on techniques for implementing multiple-

word compare-and-swap using load-linked/store-conditional and vice versa. Turek et al. [40] and

Prakash et al. [31] presented methodologies for transforming multiple lock concurrent objects into lock-free concur-

rent objects. Unfortunately, the performance of non-blocking algorithms resulting from general methodologies is

acknowledged to be significantly inferior to that of the corresponding lock-based algorithms [13, 20, 33].

Two proposals for hardware support for general non-blocking data structures have been presented: transactional

memory by Herlihy and Moss [14] and the Oklahoma update by Stone et al. [38]. Neither of these techniques has been

implemented on a real machine. The simulation-based experimental results of Herlihy and Moss show performance

significantly inferior to that of spin locks. Stone et al. did not present experimental results.

3.2 Data-Structure-Specific Non-Blocking Algorithms

Treiber [39] proposed a non-blocking implementation of concurrent link-based stacks. It represents the stack as a

singly-linked list with a Top pointer. It uses compare-and-swap to modify the value of Top atomically. Commented

pseudo-code of Treiber’s non-blocking stack algorithm is presented in Figure 1. No performance results were reported
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structure pointer t
�
ptr: pointer to node t, count: unsigned integer �

structure node t
�
value: data type, next: pointer t �

structure stack t
�
Top: pointer t �

INITIALIZE(S: pointer to stack t)
S � Top.ptr = NULL # Empty stack. Top points to NULL

PUSH(S: pointer to stack t, value: data type)
node = new node() # Allocate a new node from the free list
node � value = value # Copy stacked value into node
node � next.ptr = NULL # Set next pointer of node to NULL
repeat # Keep trying until Push is done

top = S � Top # Read Top.ptr and Top.count together
node � next.ptr = top.ptr # Link new node to head of list

until CAS(&S � Top, top, [node, top.count+1]) # Try to swing Top to new node

POP(S: pointer to stack t, pvalue: pointer to data type): boolean
repeat # Keep trying until Pop is done

top = S � Top # Read Top
if top.ptr == NULL # Is the stack empty?

return FALSE # The stack was empty, couldn’t pop
endif

until CAS(&S � Top, top, [top.ptr � next.ptr, top.count+1]) # Try to swing Top to the next node
*pvalue = top.ptr � value # Pop is done. Read value
free(top.ptr) # It is safe now to free the old node
return TRUE # The stack was not empty, pop succeeded

Figure 1: Structure and operation of Treiber’s non-blocking concurrent stack algorithm [39].

ADD(X: pointer to integer, value: integer): integer
repeat # Keep trying until SC succeeds

count = LL(X) # Read the current value of X
until SC(X, count+value)
return count # Add is done, return previous value

Figure 2: A non-blocking concurrent counter using load-linked and store-conditional.

for non-blocking stacks. However, Treiber’s stack is very simple and can be expected to be quite efficient. We also

observe that a stack derived from Herlihy’s general methodology, with unnecessary copying removed, seems to be

simple enough to compete with lock-based algorithms.

Valois [43] proposed a non-blocking implementation of linked lists. Anderson and Woll [3] proposed a non-

blocking solution to the union-find problem. Simple non-blocking centralized counters can be implemented trivially

using a fetch-and-add atomic primitive (if supported by hardware), or a read–modify–check–write cycle us-

ing compare-and-swap or load-linked/store-conditional. Figure 2 shows a non-blocking counter

implementation using load-linked/store-conditional.
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Massalin and Pu [23] presented non-blockingalgorithms for array-based stacks, array-based queues, and linked lists.

Unfortunately, their algorithms require double-compare-and-swap, a primitive that operates on two arbitrary

memory locations simultaneously, and that appears to be available only on the Motorola 68020 processor and its

direct descendants. No practical non-blocking implementations for array-based stacks or circular queues have been

proposed. The general methodologies can be used, but the resulting algorithms would be very inefficient. For these

data structures lock-based algorithms seem to be the only option.

In the following section, we continue the discussion of data-structure-specific non-blocking algorithms, concentrat-

ing on queues. Our presentation includes two new concurrent queue algorithms. One is non-blocking; the other uses

a pair of mutual exclusion locks.

4 Concurrent Queue Algorithms

4.1 Discussion of Previous Work

Many researchers have proposed lock-free algorithms for concurrent queues. Hwang and Briggs [15], Sites [34],

and Stone [37] presented lock-free algorithms based on compare-and-swap. These algorithms are incompletely

specified; they omit important details such as the handling of empty or single-item queues, or concurrent enqueues and

dequeues. Lamport [21] presented a wait-free algorithm that allows only a single enqueuer and a single dequeuer.4

Gottlieb et al. [9] and Mellor-Crummey [24] presented algorithms that are lock-free but not non-blocking: they do not

use locking mechanisms, but they allow a slow process to delay faster processes indefinitely. Treiber [39] presented

an algorithm that is non-blocking but inefficient: a dequeue operation takes time proportional to the number of the

elements in the queue.

As mentioned above, Massalin and Pu [23] presented a non-blocking array-based algorithm based on double-

compare-and-swap, a primitive available only on later members of the Motorola 68000 family of processors.

Herlihy and Wing [10] presented an array-based algorithm that requires infinite arrays. Valois [41] presented an

array-based algorithm that requires either an unaligned compare-and-swap (not supported on any architecture) or

a Motorola-likedouble-compare-and-swap.

4A wait-free algorithm is both non-blocking and starvation free: it guarantees that every active process will make progress within a bounded
number of time steps.
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Stone [35] presented a queue that is lock-free but non-linearizable5 and not non-blocking. It is non-linearizable

because a slow enqueuer may cause a faster process to enqueue an item and subsequently observe an empty queue, even

though the enqueued item has never been dequeued. It is not non-blocking because a slow enqueue can delay dequeues

by other processes indefinitely. Our experiments also revealed a race condition in which a certain interleaving of a slow

dequeue with faster enqueues and dequeues by other process(es) can cause an enqueued item to be lost permanently.

Stone also presented [36] a non-blocking queue based on a circular singly-linked list. The algorithm uses one anchor

pointer to manage the queue instead of the usual head and tail. Our experiments revealed a race condition in which a

slow dequeuer can cause an enqueued item to be lost permanently.

Prakash, Lee, and Johnson [32] presented a linearizable non-blocking algorithm that uses a singly-linked list to

represent the queue with Head and Tail pointers. It uses compare-and-swap to enqueue and dequeue nodes at the

tail and the head of the list, respectively. A process performing an enqueue or a dequeue operation first takes a snapshot

of the data structure and determines if there is another operation in progress. If so it tries to complete the ongoing

operation and then takes another snapshot of the data structure. Otherwise it tries to complete its own operation. The

process keeps trying until it completes its operation.

Valois [41, 42] presented a list-based non-blocking queue algorithm that avoids the contention caused by the

snapshots of Prakash et al.’s algorithm and allows more concurrency by keeping a dummy node at the head (dequeue

end) of a singly-linked list, thus simplifying the special cases associated with empty and single-item queues (a

technique suggested by Sites [34]). Unfortunately, the algorithm allows the tail pointer to lag behind the head pointer,

thus preventing dequeuing processes from safely freeing or re-using dequeued nodes. If the tail pointer lags behind

and a process frees a dequeued node, the linked list can be broken, so that subsequently enqueued items are lost. Since

memory is a limited resource, prohibitingmemory reuse is not an acceptable option. Valois therefore proposes a special

mechanism to free and allocate memory. The mechanism associates a reference counter with each node. Each time

a process creates a pointer to a node it increments the node’s reference counter atomically. When it does not intend

to access a node that it has accessed before, it decrements the associated reference counter atomically. In addition to

temporary links from process-local variables, each reference counter reflects the number of links in the data structure

that point to the node in question. For a queue, these are the head and tail pointers and linked-list links. A node is

5An implementation of a data structure is linearizable if it can always give an external observer, observing only the abstract data structure
operations, the illusion that each of these operations takes effect instantaneously at some point between its invocation and its response [11].
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freed only when no pointers in the data structure or temporary variables point to it. We discovered and corrected [26]

race conditions in the memory management mechanism and the associated non-blocking queue algorithm.

Most of the algorithms mentioned above are based oncompare-and-swap, and must therefore deal with the ABA

problem: if a process reads a value
�

in a shared location, computes a new value, and then attempts a compare-and-

swap operation, the compare-and-swapmay succeed when it should not, if between the read and the compare-

and-swap some other process(es) change the
�

to a � and then back to an
�

again. The most common solution is

to associate a modification counter with a pointer, to always access the counter with the pointer in any read–modify–

compare-and-swap sequence, and to increment it in each successful compare-and-swap. This solution does

not guarantee that the ABA problem will not occur, but makes it extremely unlikely. To implement this solution,

one must either employ a double-word compare-and-swap, or else use array indices instead of pointers, so that

they may share a single word with a counter. Valois’s reference counting technique guarantees preventing the ABA

problem without the need for modification counters or the double-word compare-and-swap. Mellor-Crummey’s

lock-free queue [24] requires no special precautions to avoid the ABA problem because it uses compare-and-swap

in a fetch-and-store–modify–compare-and-swap sequence rather than the usual read–modify–compare-

and-swap sequence. However, this same feature makes the algorithm blocking.

4.2 New Algorithms

We present two concurrent queue algorithms inspired by ideas in the work described above. Both of the algorithms are

simple and practical. One is non-blocking; the other uses a pair of locks. Figure 3 presents commented pseudo-code

for the non-blocking queue data structure and operations. The algorithm implements the queue as a singly-linked list

with Head and Tail pointers. Head always points to a dummy node, which is the first node in the list. Tail points

to either the last or second to last node in the list. The algorithm uses compare-and-swap, with modification

counters to avoid the ABA problem. To allow dequeuing processes to free and then re-use dequeued nodes, the dequeue

operation ensures that Tail does not point to the dequeued node nor to any of its predecessors.

To obtain consistent values of various pointers we rely on sequences of reads that re-check earlier values to be sure

they have not changed. These sequences of reads are similar to, but simpler than, the snapshots of Prakash et al. (we

need to check only one shared variable rather than two). A similar technique can be used to prevent the race condition
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in Stone’s blocking algorithm. A simple and efficient non-blocking stack algorithm due to Treiber [39] can be used to

implement a non-blocking free list.

Figure 4 presents commented pseudo-code for the two-lock queue data structure and operations. The algorithm

employs separate Head and Tail locks, to allow complete concurrency between enqueues and dequeues. As in the

non-blocking queue, we keep a dummy node at the beginning of the list. Because of the dummy node, enqueuers never

have to access Head, and dequeuers never have to access Tail, thus avoiding deadlock problems that might arise from

processes trying to acquire the locks in different order.

Experimental results comparing these algorithms with others are presented in Section 5. A discussion of algorithm

correctness is presented in Appendix A.

5 Experimental Results

We use a Silicon Graphics Challenge multiprocessor with twelve 100 MHz MIPS R4000 processors to compare the

performance of the most promising non-blocking, ordinary lock-based, and preemption-safe lock-based implemen-

tations of counters and of link-based queues, stacks, and skew heaps. We use micro-benchmarks to compare the

performance of the alternative algorithms under various levels of contention. We also use two versions of a parallel

quicksort application, together with a parallel solution to the traveling salesman problem, to compare the performance

of the algorithms when used in a real application.6

To ensure the accuracy of our results regarding the level of multiprogramming, we prevented other users from

accessing the multiprocessor during the experiments. To evaluate the performance of the algorithms under different

levels of multiprogramming, we used a feature of the Challenge’s Irix operating system that allows programmers to

pin processes to processors. We then used one of the processors to serve as a pseudo-scheduler. Whenever a process

is due for preemption, the pseudo-scheduler interrupts it, forcing it into a signal handler. The handler spins on a flag

which the pseudo-scheduler sets when the process can continue computation. The time spent executing the handler

represents the time during which the processor is taken from the process and handed over to a process that belongs to

some other application. The time quantum is 10 ms.

6C code for all the micro-benchmarks and the real applications are available from ftp://ftp.cs.rochester.edu/pub/packages/
sched conscious synch/multiprogramming.
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structure pointer t
�
ptr: pointer to node t, count: unsigned integer �

structure node t
�
value: data type, next: pointer t �

structure queue t
�
Head: pointer t, Tail: pointer t �

INITIALIZE(Q: pointer to queue t)
node = new node() # Allocate a free node
node � next.ptr = NULL # Make it the only node in the linked list
Q � Head.ptr = Q � Tail.ptr = node # Both Head and Tail point to it

ENQUEUE(Q: pointer to queue t, value: data type)
E1: node = new node() # Allocate a new node from the free list
E2: node � value = value # Copy enqueued value into node
E3: node � next.ptr = NULL # Set next pointer of node to NULL
E4: loop # Keep trying until Enqueue is done
E5: tail = Q � Tail # Read Tail.ptr and Tail.count together
E6: next = tail.ptr � next # Read next ptr and count fields together
E7: if tail == Q � Tail # Are tail and next consistent?
E8: if next.ptr == NULL # Was Tail pointing to the last node?
E9: if CAS(&tail.ptr � next, next, [node, next.count+1]) # Try to link node at the end of the linked list
E10: break # Enqueue is done. Exit loop
E11: endif
E12: else # Tail was not pointing to the last node
E13: CAS(&Q � Tail, tail, [next.ptr, tail.count+1]) # Try to swing Tail to the next node
E14: endif
E15: endif
E16: endloop
E17: CAS(&Q � Tail, tail, [node, tail.count+1]) # Try to swing Tail to the inserted node

DEQUEUE(Q: pointer to queue t, pvalue: pointer to data type): boolean
D1: loop # Keep trying until Dequeue is done
D2: head = Q � Head # Read Head
D3: tail = Q � Tail # Read Tail
D4: next = head.ptr � next # Read Head.ptr � next
D5: if head == Q � Head # Are head, tail, and next consistent?
D6: if head.ptr == tail.ptr # Is queue empty or Tail falling behind?
D7: if next.ptr == NULL # Is queue empty?
D8: return FALSE # Queue is empty, couldn’t dequeue
D9: endif
D10: CAS(&Q � Tail, tail, [next.ptr, tail.count+1]) # Tail is falling behind. Try to advance it
D11: else # No need to deal with Tail

# Read value before CAS, otherwise another dequeue might free the next node
D12: *pvalue = next.ptr � value
D13: if CAS(&Q � Head, head, [next.ptr, head.count+1]) # Try to swing Head to the next node
D14: break # Dequeue is done. Exit loop
D15: endif
D16: endif
D17: endif
D18: endloop
D19: free(head.ptr) # It is safe now to free the old dummy node
D20: return TRUE # Queue was not empty, dequeue succeeded

Figure 3: Structure and operation of a non-blocking concurrent queue. The line numbers are used in the correctness
arguments of Appendix A.
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structure node t
�
value: data type, next: pointer to node t �

structure queue t
�
Head: pointer to node t, Tail: pointer to node t, H lock: lock type, T lock: lock type �

INITIALIZE(Q: pointer to queue t)
node = new node() # Allocate a free node
node � next = NULL # Make it the only node in the linked list
Q � Head = Q � Tail = node # Both Head and Tail point to it
Q � H lock = Q � T lock = FREE # Locks are initially free

ENQUEUE(Q: pointer to queue t, value: data type)
node = new node() # Allocate a new node from the free list
node � value = value # Copy enqueued value into node
node � next = NULL # Set next pointer of node to NULL
lock(&Q � T lock) # Acquire T lock in order to access Tail

Q � Tail � next = node # Link node at the end of the linked list
Q � Tail = node # Swing Tail to node

unlock(&Q � T lock) # Release T lock

DEQUEUE(Q: pointer to queue t, pvalue: pointer to data type): boolean
lock(&Q � H lock) # Acquire H lock in order to access Head

node = Q � Head # Read Head
new head = node � next # Read next pointer
if new head == NULL # Is queue empty?

unlock(&Q � H lock) # Release H lock before return
return FALSE # Queue was empty

endif
*pvalue = new head � value # Queue not empty. Read value before release
Q � Head = new head # Swing Head to next node

unlock(&Q � H lock) # Release H lock
free(node) # Free node
return TRUE # Queue was not empty, dequeue succeeded

Figure 4: Structure and operation of a two-lock concurrent queue.

All ordinary and preemption-safe locks used in the experiments are test-and-test-and-set locks with bounded

exponential backoff. All non-blocking algorithms also use bounded exponential backoff. The effectiveness of backoff

in reducing contention on locks and synchronization data is demonstrated in the literature [2, 25]. The backoff was

chosen to yield good overall performance for all algorithms, and not to exceed 30 � s. We emulate both test-

and-set and compare-and-swap, using load-linked and store-conditional instructions, as shown

in Figure 5.

In the figures, multiprogramming level represents the number of applications sharing the machine, with one process

per processor per application. A multiprogramming level of 1 (the top graph in each figure) therefore represents a
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TESTANDSET(X: pointer to boolean): boolean
repeat # Keep trying SC succeeds or X is TRUE

local = LL(X) # Read the current value of X
if local == TRUE

return TRUE # TAS should return TRUE
until SC(X, TRUE)
return FALSE # TAS is done, indicate that X was FALSE

COMPAREANDSWAP(X: pointer to integer, expected: integer, new: integer): boolean
repeat # Keep trying until SC succeeds or X

�� expected
local = LL(X) # Read the current value of X
if local

�� expected
return FALSE # CAS should fail

until SC(X, new)
return TRUE # CAS succeeded

Figure 5: Implementations of test-and-set and compare-and-swap using load-linked and store-
conditional.

dedicated machine; a multiprogramming level of 3 (the bottom graph in each figure) represents a system with a process

from each of three different applications on each processor.

5.1 Queues

Figure 6 shows performance results for eight queue implementations on a dedicated system (no multiprogramming),

and on multiprogrammed systems with 2 and 3 processes per processor. The eight implementations are: the usual

single-lock algorithm using both ordinary and preemption-safe locks (single ordinary lock and single safe lock); our

two-lock algorithm, again using both ordinary and preemption-safe locks (two ordinary locks and two safe locks); our

non-blocking algorithm (MS non-blocking) and those due to Prakash et al. [32] (PLJ non-blocking) and Valois [41]

(Valois non-blocking); and Mellor-Crummey’s blocking algorithm [24] (MC blocking). We include the algorithm of

Prakash et al. because it appears to be the best of the known non-blocking alternatives. Mellor-Crummey’s algorithm

represents non-lock-based but blocking alternatives; it is simpler than the code of Prakash et al., and could be expected

to display lower constant overhead in the absence of unpredictable process delays, but is likely to degenerate on a

multiprogrammed system. We include Valois’s algorithm to demonstrate that on multiprogrammed systems even a

comparatively inefficient non-blocking algorithm can outperform blocking algorithms.

The horizontal axes of the graphs represent the number of processors. The vertical axes represent execution

time normalized to that of the preemption-safe single lock algorithm. This algorithm was chosen as the basis of

normalization because it yields the median performance among the set of algorithms. We use normalized time in order
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Figure 6: Normalized execution time for one million enqueue/dequeue pairs on a multiprogrammed system, with
multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom).
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to show the difference in performance between the algorithms uniformly across different numbers of processors. If we

were to use absolute time, the vertical axes would have to be extended to cover the high absolute execution time on a

single processor, making the graph too small to read for larger numbers of processors. The absolute times in seconds

for the preemption-safe single-lock algorithm on one and 11 processors, with 1, 2, and 3 processes per processor, are

18.2 and 15.6, 38.8 and 15.4, and 57.6 and 16.3, respectively.

The execution time is the time taken by all processors to perform one million pairs of enqueues and dequeues

to an initially empty queue (each process performs 1,000,000/� enqueue/dequeue pairs, where � is the number of

processors). Every process spends 6 � s ( � 10% randomization) spinning in an empty loop after performing every

enqueue or dequeue operation (for a total of 12 � s per iteration). This time is meant to represent “real” computation.

It prevents one process from dominating the data structure and finishing all its operations while other processes are

starved by caching effects and backoff.

The results show that as the level of multiprogramming increases, the performance of ordinary locks and Mellor-

Crummey’s blocking algorithm degrades significantly, while the performance of preemption-safe locks and non-

blocking algorithms remains relatively unchanged. The “bump” at two processors is due primarily to cache misses,

which do not occur on one processor, and to a smaller amount of overlapped computation, in comparison to larger

numbers of processors. This effect is more obvious in the multiple lock and non-blocking algorithms, which have a

greater potential amount of overlap among concurrent operations.

The two-lock algorithm outperforms the single-lock in the case of high contention since it allows more concurrency,

but it suffers more with multiprogramming when using ordinary locks, as the chances are larger that a process will be

preempted while holding a lock needed by other processes. On a dedicated system, the two-lock algorithm outperforms

a single lock when more than 4 processors are active in our micro-benchmark. With multiprogramming levels of 2 and

3, the cross-over points for the one and two-lock algorithms with preemption-safe locks occur at 6 and 8 processors,

respectively. The non-blocking algorithms, except for that of Valois, provide better performance; they enjoy added

concurrency without the overhead of extra locks, and without being vulnerable to interference from multiprogramming.

Valois’s algorithm suffers from the high overhead of the complex memory management technique associated with it.
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QUEUES

Single ordinary lock 16.2
MC blocking 16.2
MS non-blocking 16.3
Two ordinary locks 16.9
Two safe locks 17.7
Single safe lock 18.2
PLJ non-blocking 19.4
Valois non-blocking 23.7

Table 1: Execution times in seconds for one million enqueue/dequeue pairs on a single processor (no contention).

STACKS

Treiber non-blocking 15.4
Ordinary lock 15.8
Herlihy non-blocking 16.4
Preemption-safe lock 19.0

Table 2: Execution times in seconds for one million push/pop pairs on a single processor (no contention).

Table 1 shows absolute execution times for the eight queue implementations on a single processor. (They correspond

to the left-most points in the top graph of figure 6.) In the absence of contention, any overhead required to communicate

with the scheduler in a preemption-safe algorithm is “wasted”, but the numbers indicate that this overhead is low.

Overall, our non-blocking algorithm yields the best performance. It outperforms the single-lock preemption-

safe algorithm by more than 40% on 11 processors with various levels of multiprogramming, since it allows more

concurrency and needs to access fewer memory locations. In the case of no contention, it is essentially tied with the

single ordinary lock and with Mellor-Crummey’s queue.

5.2 Stacks

Figure 7 shows performance results for four stack implementations on a dedicated system, and on multiprogrammed

systems with 2 and 3 processes per processor. Table 2 shows performance on a dedicated processor—the left-most

points in the top-most graph. The four stack implementations are: the usual single lock algorithm using ordinary and

preemption-safe locks, Treiber’s non-blocking stack algorithm [39], and an optimized non-blocking algorithm based

on Herlihy’s general methodology [13].

Like Treiber’s non-blocking stack algorithm, the optimized algorithm based on Herlihy’s methodology uses a

singly-linked list to represent the stack with a Top pointer. However, every process has its own copy of Top and an

operation is successfully completed only when the process uses load-linked/store-conditional to swing a

shared pointer to its copy of Top. The shared pointer can be considered as pointing to the latest version of the stack.
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Figure 7: Normalized execution time for one million push/pop pairs on a multiprogrammed system, with multipro-
gramming levels of 1 (top), 2 (middle), and 3 (bottom).
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HEAPS

Ordinary lock 20.4
Preemption-safe lock 21.0
Herlihy non-blocking 22.1

Table 3: Execution times in seconds for one million insert/delete min pairs on a single processor (no contention).

The axes in the graphs have the same semantics as those in the queue graphs. Execution time is normalized to

that of the preemption-safe single lock algorithm. The absolute times in seconds for the preemption-safe lock-based

algorithm on one and 11 processors, with 1, 2, and 3 processes per processor, are 19.0 and 20.3, 40.8 and 20.7, and

60.2 and 21.6, respectively. Each process executes 1,000,000/� push/pop pairs on an initially empty stack, with a 6 � s

average delay between successive operations.

As the level of multiprogramming increases, the performance of ordinary locks degrades, while the performance of

the preemption-safe and non-blocking algorithms remains relatively unchanged. Treiber’s algorithm outperforms all

the others even on dedicated systems. It outperforms the preemption-safe algorithm by over 45% on 11 processors with

various levels of multiprogramming. This is mainly due to the fact that a push or a pop in Treiber’s algorithm typically

needs to access only two cache lines in the data structure, while a lock-based algorithm has the overhead of accessing

lock variables as well. Accordingly, Treiber’s algorithm yields the best performance even with no contention.

5.3 Heaps

Figure 8 shows performance results for three skew heap implementations on a dedicated system, and on multipro-

grammed systems with 2 and 3 processes per processor. Table 3 shows performance on a dedicated processor. The

three implementations are: the usual single-lock algorithm using ordinary and preemption-safe locks, and an optimized

non-blocking algorithm due to Herlihy [13].

The optimized non-blocking algorithm due to Herlihy uses a binary tree to represent the heap with a Root pointer.

Every process has its own copy of Root. A process performing a heap operation copies the nodes it intends to modify

to local free nodes and finally tries to swing a global shared pointer to its copy of Root using load-linked/store-

conditional. If it succeeds, the local copies of the copied nodes become part of the global structure and the copied

nodes are recycled for use in future operations.

The axes in the graphs have the same semantics as those for the queue and stack graphs. Execution time is

normalized to that of the preemption-safe single lock algorithm. The absolute times in seconds for the preemption-safe
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Figure 8: Normalized execution time for one million insert/delete min pairs on a multiprogrammed system, with
multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom).
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COUNTERS

LL/SC 14.6
Ordinary lock 16.0
Preemption-safe lock 17.7

Table 4: Execution times in seconds for one million atomic increments on a single processor (no contention).

lock-based algorithm on one and 11 processors, with 1, 2, and 3 processes per processor, are 21.0 and 27.7, 43.1 and

27.4, and 65.0 and 27.6, respectively. Each process executes 1,000,000/� insert/delete min pairs on an initially empty

heap with a 6 � s average delay between successive operations. Experiments with non-empty heaps resulted in relative

performance similar to that depicted in the graphs.

As the level of multiprogramming increases the performance of ordinary locks degrades, while the performance

of the preemption-safe and non-blocking algorithms remains relatively unchanged. The degradation of the ordinary

locks is larger than that suffered by the locks in the queue and stack implementations, because the heap operations

are more complex and result in higher levels of contention. Unlike the case for queues and stacks, the non-blocking

implementation of heaps is quite complex. It cannot match the performance of the preemption-safe lock implementation

on either dedicated or multiprogrammed systems, with or without contention. Heap implementations resulting from

general non-blocking methodologies (without data-structure-specific elimination of copying) are even more complex,

and could be expected to perform much worse.

5.4 Counters

Figure 9 shows performance results for three implementations of counters on a dedicated system, and on multi-

programmed systems with 2 and 3 processes per processor. Table 4 shows performance on a dedicated processor.

The three implementations are: the usual single-lock algorithm using ordinary and preemption-safe locks, and the

non-blocking algorithm using load-linked/store-conditional.

The axes in the graphs have the same semantics as those for the previous graphs. Execution time is normalized to

that of the preemption-safe single lock algorithm. The absolute times in seconds for the preemption-safe lock-based

algorithm on one and 11 processors, with 1, 2, and 3 processes per processor, are 17.7 and 10.8, 35.0 and 11.3, and

50.6 and 10.9, respectively. Each process executes 1,000,000/� increments on a shared counter with a 6 � s average

delay between successive operations.
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Figure 9: Normalized execution time for one million atomic increments on a multiprogrammed system, with multi-
programming levels of 1 (top), 2 (middle), and 3 (bottom).
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QUICKSORT – QUEUE

MS non-blocking 3.6
Single ordinary lock 4.0
Single safe lock 4.0

Table 5: Execution times in seconds for quicksort of 500,000 items using a shared queue on a single processor (no
contention).

QUICKSORT – STACK

Treiber non-blocking 3.0
Single ordinary lock 3.3
Single safe lock 3.4

Table 6: Execution times in seconds for quicksort of 500,000 items using a shared stack on a single processor (no
contention).

The results are similar to those observed for queues and stacks, but are even more pronounced. The non-blocking

algorithm outperforms the preemption-safe lock-based counter by more than 55% on 11 processors with various levels

of multiprogramming. The performance of a fetch-and-add atomic primitive would be even better [27].

5.5 Quicksort Application

We performed experiments on two versions of a parallel quicksort application, one that uses a link-based queue, and

another that uses a link-based stack for distributing items to be sorted among the cooperating processes. We used three

implementations for each of the queue and the stack: the usual single lock algorithm using ordinary and preemption-

safe locks, and our non-blocking queue and Treiber’s stack, respectively. In each execution, the processes cooperate

in sorting an array of 500,000 pseudo-random numbers using quicksort for intervals of more than 20 elements, and

insertion sort for smaller intervals.

Figure 10 and Table 5 show performance results for the three queue-based versions; figure 11 and Table 6 show

results for the three stack-based versions. Execution times are normalized to those of the preemption-safe lock-based

algorithms. The absolute times in seconds for the preemption-safe lock-based algorithm on one and 11 processors,

with 1, 2, and 3 processes per processor, are 4.0 and 1.6, 7.9 and 2.3, and 11.6 and 3.3, respectively for a shared queue,

and 3.4 and 1.5, 7.0 and 2.3, and 10.2 and 3.1, respectively for a shared stack.

The results confirm our observations from experiments on micro-benchmarks. Performance with ordinary locks

degrades under multiprogramming, though not as severely as before, since more work is being done between atomic

operations. Simple non-blocking algorithms yield superior performance even on dedicated systems, making them the

algorithm of choice under any level of contention or multiprogramming.

23



Quicksort – queue

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
  t

im
e

preemption−safe lock
ordinary lock
MS non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
  t

im
e

ordinary lock
preemption−safe lock
MS non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
  t

im
e

ordinary lock
preemption−safe lock
MS non−blocking

Figure 10: Normalized execution time for quicksort of 500,000 items using a shared queue on a multiprogrammed
system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom).
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Quicksort – stack

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
  t

im
e

preemption−safe lock
ordinary lock
Treiber non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
  t

im
e

ordinary lock
preemption−safe lock
Treiber non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
  t

im
e

ordinary lock
preemption−safe lock
Treiber non−blocking

Figure 11: Normalized execution time for quicksort of 500,000 items using a shared stack on a multiprogrammed
system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom).
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TSP

Ordinary locks 32.8
Hybrid 33.7
Non-blocking 34.3
Safe locks 34.9

Table 7: Execution times in seconds for a 17-city traveling salesman problem using a shared priority queue, stack and
counters on a single processor (no contention).

5.6 Traveling Salesman Application

We performed experiments on a parallel implementation of a solution to the traveling salesman problem. The

program uses a shared heap, stack, and counters. We used three implementations for each of the heap, stack, and

counters: the usual single lock algorithm using ordinary and preemption-safe locks, and the best respective non-

blocking algorithms (Herlihy–optimized, Treiber, and load-linked/store-conditional). In each execution,

the processes cooperate to find the shortest tour in a 17-city graph. The processes use the priority queue heap to

share information about the most promising tours, and the stack to keep track of the tours that are yet to be computed.

We ran experiments with each of the three implementations of the data structures. In addition, we ran experiments

with a “hybrid” program that uses the version of each data structure that ran the fastest for the micro-benchmarks:

non-blocking stacks and counters, and a preemption-safe priority queue.

Figure 12 and Table 7 show performance results for the four different experiments. Execution times are normalized

to those of the preemption-safe lock-based experiment. The absolute times in seconds for the preemption-safe lock-

based experiment on one and 11 processors, with 1, 2, and 3 processes per processor, are 34.9 and 14.3, 71.7 and 15.7,

and 108.0 and 18.5, respectively. Confirming our results with micro-benchmarks, the experiment based on ordinary

locks suffers under multiprogramming. The hybrid experiment yields the best performance, since it uses the best

implementation of each of the data structures.

6 Conclusions

For atomic update of a shared data structure, the programmer may ensure consistency using (1) a single lock, (2) multiple

locks, (3) a general-purpose non-blocking technique, or (4) a special-purpose (data-structure-specific) non-blocking

algorithm. The locks in (1) and (2) may or may not be preemption-safe.

Options (1) and (3) are easy to generate, given code for a sequential version of the data structure, but options (2)

and (4) must be developed individually for each different data structure. Good data-structure-specific multi-lock and
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Figure 12: Normalized execution time for a 17-city traveling salesman problem using a shared priority queue, stack
and counters on a multiprogrammed system, with multiprogramming levels of 1 (top), 2 (middle), and 3 (bottom).
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non-blocking algorithms are sufficiently tricky to devise that each has tended to constitute an individual publishable

result.

Our experiments indicate that for simple data structures, special-purpose non-blocking atomic update algorithms

will outperform all alternatives, not only on multiprogrammed systems, but on dedicated machines as well. Given

the availability of a universal atomic hardware primitive, there seems to be no reason to use any other version of a

link-based stack, a link-based queue, or a small, fixed-sized object like a counter.

For more complex data structures, however, or for machines without universal atomic primitives, preemption-safe

locks are clearly important. Preemption-safe locks impose a modest performance penalty on dedicated systems, but

provide dramatic savings on time-sliced systems.

For the designers of future systems, we recommend (1) that hardware always include a universal atomic primitive,

and (2) that kernel interfaces provide a mechanism for preemption-safe locking. For small-scale machines, the Synunix

interface [8] appears to work well. For larger machines, a more elaborate interface may be appropriate [18].

We have presented a concurrent queue algorithm that is simple, non-blocking, practical, and fast. It appears to be

the algorithm of choice for any queue-based application on a multiprocessor with a universal atomic primitive. Also,

we have presented a two-lock queue algorithm. Because it is based on locks, it will work on machines with such

non-universal atomic primitives as test-and-set. We recommend it for heavily-utilized queues on such machines.

For a queue that is usually accessed by only one or two processors, a single lock will perform better.
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Appendix A: Correctness of the Queue Algorithms

A.1 Safety

The presented algorithms are safe because they satisfy the following properties:

1. The linked list is always connected.

2. Nodes are only inserted after the last node in the linked list.

32



3. Nodes are only deleted from the beginning of the linked list.

4. Head always points to the first node in the linked list.

5. Tail always points to a node in the linked list.

Initially, all these properties hold. By induction, we show that they continue to hold, assuming that the ABA problem

never occurs.

1. The linked list is always connected because once a node is inserted, its next pointer is not set to NULL before it

is freed, and no node is freed until it is deleted from the beginning of the list (property 3).

2. In the lock-free algorithm, nodes are only inserted at the end of the linked list because they are linked through

the Tail pointer, which always points to a node in the linked-list (property 5), and an inserted node is linked only

to a node that has a NULL next pointer, and the only such node in the linked list is the last one (property 1).

In the lock-based algorithm, nodes are only inserted at the end of the linked list because they are inserted after

the node pointed to by Tail, and in this algorithm Tail always points to the last node in the linked list, unless it is

protected by the tail lock.

3. Nodes are deleted from the beginning of the list, because they are deleted only when they are pointed to by Head

and Head always points to the first node in the list (property 4).

4. Head always points to the first node in the list, because it only changes its value to the next node atomically

(either using the head lock or using compare-and-swap). When this happens the node it used to point to is

considered deleted from the list. The new value of Head cannot be NULL because if there is one node in the

linked list the dequeue operation returns without deleting any nodes.

5. Tail always points to a node in the linked list, because it never lags behind Head, so it can never point to a deleted

node. Also, when Tail changes its value it always swings to the next node in the list and we never try to change

its value if the next pointer is NULL.
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A.2 Linearizability

The presented algorithms are linearizable because there is a specific point during each operation at which it can be

considered to “take effect” [11]. An enqueue takes effect when the allocated node is linked to the last node in the

linked list. A dequeue takes effect when Head swings to the next node. And, as shown in the previous subsection

(properties 1, 4, and 5), the queue variables always reflect the state of the queue; they never enter a transient state in

which the state of the queue can be mistaken (e.g. a non-empty queue appearing to be empty).

A.3 Liveness

The Lock-Free Algorithm is Non-Blocking

The algorithm is non-blocking because if there are non-delayed processes attempting to perform operations on the

queue, an operation is guaranteed to complete within finite time.

An enqueue operation loops only if the condition in line E7 fails, the condition in line E8 fails, or the compare-

and-swap in line E9 fails. A dequeue operation loops only if the condition in line D5 fails, the condition in line D6

holds (and the queue is not empty), or the compare-and-swap in line D13 fails.

We show that the algorithm is non-blocking by showing that a process loops beyond a finite number of times only

if another process completes an operation on the queue.

� The condition in line E7 fails only if Tail is written by an intervening process after executing line E5. Tail always

points to the last or second to last node of the linked list, and when modified it follows the next pointer of the

node it points to. Therefore, if the condition in line E7 fails more than once, then another process must have

succeeded in completing an enqueue operation.

� The condition in line E8 fails if Tail was pointingto the second to last node in the linked-list. After thecompare-

and-swap in line E13, Tail must point to the last node in the list, unless a process has succeeded in enqueuing a

new item. Therefore, if the condition in line E8 fails more than once, then another process must have succeeded

in completing an enqueue operation.

� The compare-and-swap in line E9 fails only if another process succeeded in enqueuing a new item to the

queue.
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� The condition in line D5 and the compare-and-swap in line D13 fail only if Head has been written by

another process. Head is written only when a process succeeds in dequeuing an item.

� The condition in line D6 succeeds (while the queue is not empty) only if Tail points to the second to last node in

the linked list (in this case it is also the first node). After the compare-and-swap in line D10, Tail must point

to the last node in the list, unless a process succeeded in enqueuing a new item. Therefore, if the condition of

line D6 succeeds more than once, then another process must have succeeded in completing an enqueue operation

(and the same or another process succeeded in dequeuing an item).

The Two-Lock Algorithm is Livelock-Free

The two-lock algorithm does not contain any loops. Therefore, if the mutual exclusion lock algorithm used for locking

and unlocking the head and tail locks is livelock-free, then the presented algorithm is also livelock-free. There are

many mutual exclusion algorithms that are livelock-free.
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