
0018-9162/97/$10.00 © 1997 IEEE September 1997 75

Scalable Processors in
the Billion-Transistor
Era: IRAM

T
he importance of an efficient memory system is
increasing as fabrication processes scale down,
yielding faster processors and larger memories.
This trend widens the processor-memory gap.
Not long ago, off-chip main memory was able

to supply the CPU with data at an adequate rate. Today,
with processor performance increasing at a rate of about
60 percent per year and memory latency improving by
just 7 percent per year,1 it takes dozens of cycles for data
to travel between the CPU and main memory.

Designers are investing vast amounts of chip
resources to bridge this gap. An increasing fraction of
the area budget within microprocessor chips is devoted
to static RAM (SRAM) caches. For instance, almost
half of the die area in the Digital Alpha 21164 is occu-
pied by caches, used solely for hiding memory latency.
This cache memory is just a redundant copy of infor-
mation that would not be necessary if main memory
had kept up with processor speed. Still, some applica-
tions show poor locality, resulting in low performance
even with large caches.2

Other latency tolerance techniques include combining
large caches with some form of out-of-order execution
and speculation. Yet this is not an efficient solution for the
future, as it requires a disproportionate increase in chip
area and complexity. Consider, for example, the MIPS
R5000 and R10000 processors. The first is a simple RISC
processor, while the second is a complex, out-of-order,
speculative one. The R10000 takes 3.43 times more area
than the R5000, but its performance, as measured by its
SPECint95 peak rating, is only 1.64 times higher.

Other architecture alternatives, like wide superscalar
and VLIW (very long instruction word), suffer from
drawbacks—implementation complexity, low utiliza-
tion of resources, and immature compiler technol-
ogy—or deliver only modest performance improve–
ments. Moreover, they usually exacerbate the main
memory bandwidth bottleneck.3

Beyond the uniprocessor, the possibility exists for
the integration of multiple processors on a single die,
but this integration would place even greater demands
on the memory system. For any given die size, putting
more processors on a die will result in less on-chip
memory for each, thus increasing the number of slow,
off-chip memory accesses. In general, increasing the
computing resources without a corresponding increase
in the on-chip memory will lead to an unbalanced sys-
tem. Functional units will often be starved for data
because of the high latency and limited bandwidth to
and from off-chip memory.

Power dissipation is quickly becoming another
major concern in processor architecture as current
processors already require extremely high power bud-
gets. The increasing importance of portable electronic
systems dictates low-power processor and system
designs. It is plausible that when billion-transistor
chips become available, the desktop will not be the
main focus of the computer industry.

IRAM APPROACH
The intelligent RAM (IRAM) approach to the bil-

lion-transistor microprocessor is to use the on-chip real-
estate for dynamic RAM (DRAM) memory instead of
SRAM caches. It is based on the fact that DRAM can
accommodate 30 to 50 times more data than the same
chip area devoted to caches.4 This on-chip memory can
be treated as main memory instead of a redundant
copy, and in many cases the entire application will fit
in the on-chip storage. Having the entire memory on
the chip, coupled to the processor through a high band-
width and low-latency interface, allows for processor
designs that demand fast memory systems.

Advantages
IRAM sytems have several potential advantages.5

The on-chip memory can support high bandwidth and

Conventional architectures will not efficiently scale a hundredfold to
effectively utilize billion-transistor chips. A more efficient way of using
the huge amount of real estate available is to integrate a high-performance
processor and the DRAM main memory on the same die, an architecture
called intelligent RAM, or IRAM.

Christoforos
E. Kozyrakis
Stylianos
Perissakis
David
Patterson
Thomas
Anderson
Krste
Asanovi′c
Neal
Cardwell
Richard
Fromm
Jason Golbus
Benjamin
Gribstad
Kimberly
Keeton
Randi
Thomas
Noah
Treuhaft
Katherine
Yelick
University of
California,
Berkeley

Th
em

e
Fe

at
ur

e

The IRAM
approach,
combined
with a vector
architecture,
leads to a
scalable, high-
performance
system.

76 Computer

low latency by using a wide interface and eliminating
the delay of pads and buses. Energy consumption in
the memory system is decreased several times due to
the reduction of off-chip accesses through high-capac-
itance buses.4 Since the majority of pins in conven-
tional microprocessors are devoted to wide memory
interfaces, an IRAM can have a much more stream-
lined interface. Fewer pins result in a smaller package,
and serial interfaces (like FibreChannel and Gigabit
Ethernet) that are directly attached to the chip can
provide ample I/O bandwidth without being limited
by conventional slow I/O buses.6

The IRAM approach can be combined with most
processor organizations because of the inherent cost
advantages of system-level integration. Alas, the first
impulse of many computer architects when offered a
new technology is simply to build larger caches for con-
ventional architectures. Such designs gain little perfor-
mance from the on-chip main memory because they
were developed with the implicit assumption of a slow
memory system that is rarely accessed.4 Using the IRAM
approach creates the potential for superior performance
on architectures that can effectively exploit the higher
memory bandwidth and lower memory latency.

For any other architecture to be widely accepted,
however, it has to be able to run a significant body of
software. As the software model becomes more revo-
lutionary, the cost-performance benefit of the archi-
tecture must increase for wide acceptance.1 Given the
rapid rate of processor performance improvement and
the long time needed for software development, the
amount of available code and the simplicity of the pro-
gramming model are extremely important.

Vector IRAM architecture
An architecture that appears to be a natural match

to IRAM because of its bandwidth demands and its
well understood programming model is the vector
processor. Figure 1 shows the floor plan of the
Berkeley IRAM design. In this model the vector
processor consists of a vector execution unit combined
with a fast in-order scalar core.7 The combination of
a vector unit with a scalar processor creates a general-
purpose architecture that can deliver high perfor-
mance without the issue complexity of superscalar
designs or the compiler complexity of VLIW.8

Although vector architectures are commonly asso-
ciated with expensive supercomputers, V-IRAM is a
cost-effective system, providing a scalar processor with
a vector unit and the memory system on a single die.
Vector computers today often use SRAM main mem-
ory for low latency and use exotic packaging to pro-
vide enough bandwidth to the processor, but a
single-chip vector IRAM avoids these costs. The vec-
tor unit contains multiple parallel pipelines operating
concurrently and vector registers striped across the
pipelines, allowing multiple vector elements to be

processed in a clock cycle. Increasing the number of
pipelines provides a straightforward way to scale per-
formance, as the capacity of integrated circuits
increases, without requiring changes to the instruc-
tion issue logic or recompilation.

Vector processors have traditionally been used for
scientific calculations,9 but many other applications
could benefit from a low-cost vector microprocessor.
Emerging applications like multimedia (video, image,
and audio processing) are inherently vectorizable: A
vector instruction set is the natural way to express con-
current operations on arrays of data, like pixels or
audio samples. For example, the Intel MMX extension
can be considered a modest vector unit. Many data-
base primitives, like sort, search, and hash-join, have
been vectorized, and memory-intensive database appli-
cations like decision support and data mining could
benefit from IRAM systems with a vector processor.

Even integer applications that are not commonly
considered to be vectorizable can often achieve sig-
nificant speedup through vectorization of their inner
loops. For example, the SPECint95 benchmark
m88ksim and data decompression achieve speedups
of 42 percent and 36 percent respectively through vec-
torization.7 In pretty good privacy (PGP) encryption,
a vector microprocessor has been shown to signifi-
cantly outperform an aggressive superscalar proces-
sor while occupying less than one-tenth of the die area.
In addition to the vector processor, vector IRAM
includes a fast scalar processor with small SRAM pri-
mary caches, so even nonvectorizable codes will ben-
efit from the fast memory system.

Vector programming provides a simple way to
exploit fine-grain data parallelism. Instruction and
data dependencies can be efficiently expressed and
passed to the hardware.8 A large amount of research
has been invested in vectorizing compilers and in pro-
grammer annotations to aid in vectorization, which
have been in use by the community for years. In con-
trast, compilers for VLIW, multithreaded, and MIMD
multiprocessors are much more experimental and typ-
ically require much more programmer intervention.

Although compiler researchers have looked at vec-
tor architectures, surprisingly the computer architec-
ture research community has largely ignored vector
architectures while advancing superscalar, VLIW, and
multithreaded designs. Hence, innovation at the
architecture-compiler interface may allow even more
programs to vectorize, making vector IRAM even
more attractive.

Because of the simplicity of their circuits, vector
processors can operate at higher clock speeds than
other architectural alternatives. Simpler logic, higher
code density, and the ability to selectively activate the
vector and scalar units when necessary also provide
higher energy efficiency. Energy efficiency has in-
creased importance in the IRAM context, where it is

necessary to keep the die temperature relatively low
to keep the data retention rate at an acceptable level,
since empirical data suggest that it has to be doubled
for every 10-degree increase in die temperature.
Finally, a vector unit with a wide interface to memory
can operate as a parallel built-in self-test engine for
the memory array, significantly reducing the DRAM
testing time and the associated cost.

As the MIPS R5000 demonstrates, a simple scalar
processor can have reasonable performance. Moreover,
on-chip memory could reduce processor-memory latency
by factors of 5 to 10 and increase memory bandwidth
by factors of 50 to 200.5 When such a processor is com-
bined with a vector unit and low-latency, high-band-
width DRAM memory, it becomes a general-purpose,
high-performance, cost-effective, and scalable sytem.

BERKELEY V-IRAM SYSTEM
Figure 1 shows a possible floor plan of a gigabit-gen-

eration V-IRAM. A minimum feature size of 0.13 mm
and a die of 400 mm2 will be typical for first-generation
production chips—assuming a full-size DRAM die
with a quarter of the area dedicated to logic.

The vector unit consists of two load, one store, and
two arithmetic units, each with eight 64-bit pipelines
running at 1 GHz. Given that clock rates of 600 MHz
have already been achieved for complex superscalar
microprocessors, a 1-GHz clock rate is a realistic pro-
jection. Hence, the peak performance of the V-IRAM
implementation is 16 GFLOPS (at 64 bits per opera-
tion) or 128 GOPS, when each pipeline is split into
multiple 8-bit pipelines for multimedia operations.

The on-chip memory system has a total capacity of
96 Mbytes and is organized as 32 sections, each com-
prising 16 1.5-Mbit banks and an appropriate cross-
bar switch. Assuming a pipelined synchronous-
DRAM-like interface with 20-ns latency and a 4-ns
cycle, the memory system can meet the bandwidth
demands of the vector unit at 192 Gbytes per second.
The scalar core of V-IRAM is a dual-issue processor
with first-level instruction and data caches.

This floor plan indicates another advantage of
V-IRAM when trying to use a billion transistors: The
design is highly regular with a few unique pieces used
repeatedly across the die. Thus the development cost
of V-IRAM can be much lower than it would be for
conventional designs with a billion transistors.

CHALLENGES TO IRAM
For the IRAM approach to become a mainstream

architecture, a number of critical issues need to be
resolved. With respect to the fabrication process, the
major concerns are the speed of transistors, noise, and
overall yield. Current developments in the DRAM
industry—such as merged DRAM-logic processes with
dual gate oxide thickness and more than two layers of
metal—suggest that future DRAM transistors will

approach the performance of transistors in logic
processes.10 Noise introduced into the memory array
by the fast switching logic can be addressed by using
separate power lines and wells for the two system com-
ponents and by adopting low-power design techniques
and architectures. Redundancy in the processor—such
as a spare vector pipeline in the case of V-IRAM—can
be adopted to compensate for yield reduction due to
the addition of logic in the DRAM chip.

A more serious architectural consideration is the
bounded amount of DRAM that can fit on a single
IRAM chip. At the gigabit generation, 96 Mbytes
may be sufficient for portable computers, but not for
high-end workstations. A potential solution is to
back up a single IRAM chip with commodity-exter-
nal DRAM, using the off-chip memory as secondary
storage with pages swapped between on-chip and
off-chip memory. Alternatively, multiple IRAMs
could be interconnected with a high-speed network
to form a parallel computer. Ways to achieve this
have already been proposed in the literature.6,11,12

Fortunately, historical trends indicate that the end-
user demand for memory will scale at a lower rate
than the available capacity per chip. So, over time a
single IRAM chip will be sufficient for increasingly
larger systems, from portable and low-end PCs to
workstations and even servers.

T he vector architecture is not the only option for
IRAM systems. If IRAM technology proves suc-
cessful, there may be even more dramatic integra-

tion of processor and memory, distributing portions of
processors closer to the individual memory banks. The
challenge for such innovation is software migration.
Fortunately, the synergy between IRAM and vector
processing suggests a high-performance architecture
with mature compiler technology, offering a simple and

September 1997 77

Figure 1. Potential
floorplan of the
Berkeley V-IRAM.

Memory: 48 Mbytes, 400 million transistors

Memory: 48 Mbytes, 400 million transistors

Memory crossbar

Memory crossbar

Vector unit:
4 million transistors I/O

CPU
and caches:

3 million
transistors

Redundant
vector pipe

received a diploma in electrical and computer engineer-
ing from the National Technical University of Athens,
Greece, and an MS in computer science from the Uni-
versity of California, Berkeley.

David Patterson holds the Pardee Chair of Computer
Science at the University of California, Berkeley, where
he teaches computer architecture. He received his PhD
in computer science from the University of California,
Los Angeles.

Thomas Anderson is an associate professor in the Com-
puter Science Division at the University of California,
Berkeley. He received an AB in philosophy from Har-
vard University and an MS and a PhD in computer sci-
ence from the University of Washington, Seattle.

Krste Asanovi′c holds a postdoctoral position in the Com-
puter Science Division at the University of California,
Berkeley. He received a BA in electrical and information
sciences tripos from Cambridge University and a PhD
from the University of California, Berkeley.

Neal Cardwell is pursuing a PhD in computer science at the
University of California, Berkeley. He received a BS in com-
puter science from the College of William and Mary.

Richard Fromm is pursuing a PhD in computer science
at the University of California, Berkeley. He received a
BS in electrical engineering from Cornell University.

Jason Golbus is pursing an MS in electrical engineering
at the University of California, Berkeley. He received a
BS in electrical engineering from Duke University.

Benjamin Gribstad is pursuing an MS in electrical engi-
neering at the University of California, Berkeley. He
received a BS in electrical engineering from the University
of Minnesota.

Kimberly Keeton is pursing a PhD in computer science
at the University of California, Berkeley. She received a
BS in computer engineering from Carnegie Mellon and
an MS in computer science from the University of Cal-
ifornia, Berkeley.

Randi Thomas is pursing a PhD in computer science at
the University of California, Berkeley. She received a
BS in mathematics from the University of California,
Berkeley.

Noah Treuhaft is pursuing a PhD in the computer sci-
ence division at the University of California, Berkeley.
He received a BA in computer science and mathematics
from Oberlin College.

Katherine Yelick is an associate professor at the Uni-
versity of California, Berkeley. She received a BS, an MS,
and a PhD in computer science from MIT.

For more information on the Berkeley IRAM project,
see http://iram.cs.berkeley.edu/. Contact C.E. Kozyrakis
at kozyraki@cs.berkeley.edu.

78 Computer

low-cost solution with software migration for general-
purpose systems in the billion-transistor era. ❖

Acknowledgments
This research is supported by the US Defense

Advanced Research Projects Agency contract DABT63-
C-0056, the California State MICRO Program, Intel,
Silicon Graphics/Cray Research, and Sun Microsystems.

References
1. J.L. Hennessy and D.A. Patterson, Computer Architec-

ture: A Quantitative Approach, 2nd ed., Morgan Kauf-
mann, San Mateo, Calif., 1996.

2. S.E. Perl and R.L. Sites, “Studies of Windows NT Perfor-
mance Using Dynamic Execution Traces,” Proc. 2nd Symp.
Operating Design and Implementation, USENIX Assoc.,
Berkeley, Calif., 1996, pp. 169–183.

3. D. Burger, J.R. Goodman, and A. Kagi, “Memory Band-
width Limitations of Future Microprocessors,” Proc. 23rd
Ann. Int’l Symp. on Computer Architecture, ACM Press,
New York, 1996, pp. 78-89.

4. R. Fromm et al., “The Energy Efficiency of IRAM Archi-
tectures,” Proc. 24th Ann. Int’l Symp. Computer Archi-
tecture, 1997, pp. 327–337.

5. D. Patterson et al., “A Case for Intelligent RAM,” IEEE
Micro, Mar./Apr. 1997, pp. 34–44.

6. K. Keeton, R. Arpaci-Dusseau, and D.A. Patterson, “IRAM and
SmartSIMM: Overcoming the I/O Bus Bottleneck,” http://iram.cs.
berkeley.edu/isca97-workshop/ (current July 23, 1997).

7. K. Asanovi′c, Vector Microprocessors, doctoral thesis, Univ.
of California, Berkeley, Computer Science Division, 1997.

8. J.E. Smith, “The Best Way to Achieve Vector-Like Perfor-
mance? Use Vectors,” keynote talk at 21st Ann. Int’l Symp.
Computer Architecture, Apr. 2–11, 1994, http://www.
ece.wisc.edu/~jes/pitches/vector.ps (current July 23, 1997).

9. P.M. Johnson, “An Introduction to Vector Processing,”
Computer Design, Feb. 1978, pp. 89–97.

10. M. Nagy et al., “DRAM + Logic Integration: Which
Architecture and Fabrication Process?” IEEE Int’l Solid-
State Circuits Conf. Digest of Technical Papers, IEEE
Press, Piscataway, N.J., 1997.

11. D.C. Burger, S. Kaxiras, and J.R. Goodman, “Data-Scalar
Architectures,” Proc. 24th Ann. Int’l Symp. Computer
Architecture, ACM Press, May 1997, pp. 338–349.

12. S. Kaxiras, R. Sugumar, and J. Scharzmeier, “Distributed
Vector Architecture: Beyond a Single-Vector IRAM,”
http://iram.cs.berkeley.edu/isca97-workshop/ (current
July 23, 1997).

Christoforos E. Kozyrakis is pursuing a PhD in com-
puter science at the University of California, Berkeley.
He received a BS in computer science from the Univer-
sity of Crete, Greece.

Stylianos Perissakis is pursuing a PhD in computer sci-
ence at the University of California, Berkeley. He

