
ct
ent
ion
n
em
y
nce
ed

y to
ut

at

the
loy
are
re
me
ns

ead
nd
al
te
re
s

ed
ly

w
he
he
om
es.
an

on
e
n
e

a

l
of
ed
sed.

ved
d

he

Accelerated Verification of Digital Devices Using VHDL

Sandi Habinc, Peter Sinander

European Space Agency, Electrical Engineering Department, Microelectronics Section
Postbus 299, NL-2200 AG Noordwijk, The Netherlands

Tel. +31 71 565 6565, Fax. +31 71 565 4295
sandi@ws.estec.esa.nl, psi@ws.estec.esa.nl
Abstract

As digital designs become more complex and increasingly
include a processor on the chip, verification – and in
particular the generation of testbenches – is becoming a
bottleneck. This paper presents two aspects for improving the
verification of microprocessors; program-less verification,
and methods for handling large differences in abstraction
level between a reference model and the actual design.
Program-less verification is a type of pseudo random
verification where the notion of a software program
executing on the microprocessor has been abandoned. This
removes some restrictions on the pseudo random data and
instruction streams, and avoids limitations and bugs in
software tools such as assemblers. A high level of
abstraction is important when creating reference models,
since it reduces the risk for introducing errors in the
reference, as well as the effort for coding it. However, the
testbenches must then be able to cope with behavioural
dif ferences due to phenomena such as prefetching,
speculative execution etc.

1 Introduction

With growing complexities of digital devices, the generation
of a complete verification suite requires an ever increasing
portion of the development time and resources. Today, even
though extensive verification has been employed, devices
with incorrect functional behaviour are occasionally
manufactured and marketed. Typically, the erroneous
logical implementation has not been detected due to
inappropriate verification criteria. An important contributing
factor to such oversights is that those preparing the test suite
inadvertent ly tend to base i t on ant icipated device
applications and therefore misinterpret the specification in
the same way as the designers. An example of this could be
when an embedded microprocessor is verified by co-
simulation with the target application software. Another
contributing reason is that the verification bottleneck lays in
the time spent on developing the test suite rather than
simulating it (Ref. 1).

We have approached these problems by stimuli generation
for microprocessors decoupled from the foreseen usage of
the device. Our method relies on comparison of behaviour
between different representations of the microprocessor. The
notion of a valid software program is abandoned for the
stimuli generation, effectively resulting in a program-less
verification approach for microprocessors. Additionally,
limitations associated with software developments tools are
eliminated in the stimuli generation process. The ratio
between simulation time and testbench coding time is
increased, allowing a larger number of errors to be found per
t ime un i t spen t on s t imu l i deve lopment . These
characteristics yield in an acceleration of the overall
verification process.

For complex designs it is necessary to obtain a corre
reference model that is used throughout the developm
(Ref. 2). When describing a reference at a high abstract
level, the functionality is not obscured by implementatio
details which allows an easier understanding of the probl
and reduces the possibility for introduction of errors. B
applying the same stimuli to the test object as to the refere
model, errors can be detected by comparing the obtain
results. The testbench has to be able to adapt dynamicall
the response from either model to tolerate correct b
dissimilar behaviour resulting from the models being
different abstraction levels.

The stimuli is pseudo randomly generated and applied to
test object and the reference. Existing methods emp
generators coupled with assemblers and other softw
development tools, producing pseudo random softwa
programs to be executed as stimuli. Such stimuli have so
disadvantages since they have to adhere to the limitatio
that are attributed to a valid and executable program. Inst
of relying on existing pseudo random generators a
software tools, we generate the stimuli during the actu
simulation. A microprocessor is simply seen as a sta
machine being fed with instructions and data which a
conceived on the fly, effectively resulting in a program-les
verification approach. Any correlation between the specifi
function and its usage is thus avoided by complete
abandoning the notion of a program.

To cope with different abstraction levels and to allo
program-less verification, we have chosen to develop t
complete testbench in VHDL. The testbench includes t
reference model and the test object, and pseudo rand
generation of executed instruction and data sequenc
Today, testbench development is more time consuming th
the actual simulation. Methods increasing the simulati
portion of the time spent on verification are therefor
becoming attractive. The outlined approach offers a
acceleration of the verification process by reducing th
effort required for the definition and implementation of
stimuli for finding a given number of errors.

This paper starts with an overview of different functiona
verification approaches. It is followed by a presentation
our method and an in-depth description of how it was appli
to a real project. Some relevant cases are then discus
Finally, the conclusions from the experience are drawn.

2 Current verification approaches

2.1 Manual stimuli and inspection

In the past when designs were small, tests were concei
manually. For the stimuli, the simulator was commande
directly in front of the workstation, and the response in t
form of waveforms was visually inspected on the screen.

us
an
e

he
tors

d
r,

nt
e

the
e
e

lex
n

ce
om
ce
at
ped
l

on
al
g
 is
ct
e
 be
th
uld
al
 in a
d

do
st
f.
 an
ch
ce

 the
ing
n.

he
od

in
.

uli
and
d to
f

ain

ten
Depending on the response, subsequent stimuli were
conceived in an interactive manner. For example, if an error
was detected, its effect on the verification could be reduced
by avoiding to exercise that part of the design until the error
had been corrected.

While this approach is manageable for small designs, its
drawbacks include:
• risk for confusing the actual behaviour as seen on the

screen with what has been specified, especially when under
pressure to complete the work;

• limited length of the verification since requiring the person
to be present at the workstation while simulating;

• unsuitable for repeatable regression testing since
interactive, and furthermore the quality of repeated
simulations varies with the day-to-day performance of the
person running it.

2.2 Extension for regression verification

As an extension to the above approach to handle regression
testing, simulator commands were recorded in a file during
the first simulation, and then played back for repeat
simulations. Similarly, the response from the design was also
stored in a file, for example as periodically sampled signal
values. The manually inspected response from the first
simulation was stored as a reference file, and files resulting
from subsequent simulations were then compared to this
reference using some sort of comparison utility.

This extension is suitable for verifying that the design
behaves exactly as during the reference simulation, for
example to ver i fy that i t has not changed due to a
modification in the design. However, due to the rigid criteria
to exactly correspond to the reference simulation, it is not
well suited to handled minor changes in the behaviour that
are still within the specification. An example of such a case
could be a non-critical signal being active one clock cycle
later than in the reference simulation. Even if this would be
acceptable from a specification point of view, it would be
signalled as an error by the verification, since it is not
sufficiently intelligent to know whether or not such a change
represents an error. Since the stimuli is just a playback
without any feedback from the design, changes could get the
stimuli completely out of synchronisation with the actual
state of the design.

2.3 Automated testbenches

With the introduction of hardware description languages, the
designer was not only provided with a powerful tool for
describing the design itself, but also with a tool highly
suitable for verification. The concept of testbenches was
introduced, comprising stimuli generators and checkers for
functional correctness. The correctness checkers can be
devised in ways allowing different, although correct,
responses from different implementations or representations
of a design under test. With checkers that abstract from
implementation details and concentrate on functionality,
verification at a higher abstraction level is made possible.

An example of how verification is performed at a higher
abstraction level is when a checker comprises a bit-serial
receiver that outputs the received data for further processing.
A higher level checker can then analyse the received data
without involving any implementation details of the

communication protocol in the process. The checker is th
not bound by cycle or waveform-true comparison and c
therefore accept low-level deviations. When cycle-tru
comparison is desired, as for regressive verification, t
testbench can be complemented with signature genera
and checkers based on multiple input serial registers.

In this approach the objective is to verify each specifie
function of the design in a systematic manner. Howeve
complicated interaction that might exist between differe
functions can be overlooked during the verification. Th
effort to find obscure errors is often a laborious task since
creation of explicit stimuli exercising all aspects of th
design require careful analysis of the functionality and th
implementation itself.

2.4 Pseudo random stimuli

To improve the chances to detect obscure errors in comp
designs, pseudo random stimuli generation is ofte
introduced to complement the systematic verification. Sin
it is nearly impossible to determine the correct response fr
a pseudo random stimuli, comparison with a correct referen
model is often used (Ref. 2). One important criterion is th
the test object and the reference have been develo
independently in isolation to eliminate unintentiona
correlation leading to systematic errors.

The same stimuli in the form of a program is executed
both the test object and the reference. The logic
significance or meaning of the test object output, bein
address and data for a microprocessor, is arbitrary and
therefore not considered in the verification. The test obje
output is therefore only compared with the output of th
reference. Any deviations encountered must consequently
examined, which normally requires that the behaviour of bo
objects is analysed since the cause of the problem co
originate in the reference. As long as the behaviour
differences are minute, the reference can be represented
variety of styles, ranging from instruction simulators an
behavioural models to real hardware.

For microprocessors, a common way of producing pseu
random stimuli is to compile a test program using a te
generator, typically written in the C language (Ref. 2, Re
3). The generation process normally requires the use of
assembler or other software developments tools, whi
introduces limitations on the produced test program. Sin
the test program is generated prior the actual execution of
instruction sequence, there are no possibilities for adapt
the stimuli to the response obtained during the simulatio
This limits the allowable behavioural differences between t
test object and its reference. It effectively renders the meth
unsuitable for developments with large differences
abstraction level between the reference and the test object

The usage of a software program as executable stim
inadvertently introduces correlations between processors
their foreseen applications. Executable programs are boun
the following characteristics, limiting the efficiency o
current pseudo random verification approaches:
• deterministic result and purpose of any subprogram;
• correlation between processor state and memory:
• an instruction fetch to an address expects a cert

instruction to be returned;
• a data fetch to an address expects that previously writ

data are returned;

. a

s
be

 the
ot

he
e
l

in a
ill

ons
ted
 is
ion
ed
oes

ill

o
the
as
ch
nd
sis

ing
ent
g
n
e
e

tual
ted
the

to
as

 of
or
d

r
it
n
tion
ls.
ne
 a
• exceptions and subroutines need to return to their origin;
• limitations in program flow, avoiding backward jumps

resulting in infinite loops etc. (Ref. 4);
• deterministic termination of the program.

Previous work has been performed to improve the efficiency
of pseudo random verification. Instead of applying fully
random data values to an arithmetic unit, weighting of the
parameters can be performed to cover corner cases and
improve the test coverage (Ref. 5). To reduce the stimuli
length, intelligent instruction selection can be performed
taking into account the predicted internal state of the test
object (Ref. 6). To improve the quality of the generated
stimuli, sequences can be generated that explicitly exercise
different functional units simultaneously to increase the
possibility to catch errors related to complex function
interaction (Ref. 4).

Little effort has however been made to remove the limitations
inherent to software tools and the notion of software
programs, an area that we will explore further in the
following section. To achieve optimal verification, it is
important that all the above approaches are being addressed.

3 Accelerated verification approach

We add a new aspect to the generation of the pseudo random
stimuli than what has been previously addressed. Stimuli are
generated on the fly without accepting the limitations of
executable programs, also taking into account any deviations
between test object and reference responses. All the
necessary steps can be performed directly in VHDL without
the need for external software development tools. It is
basically a hardware designers approach to software-free
microprocessor verification.

3.1 Program-less pseudo random stimuli

There is no resemblance of a software program in the
testbench, only a sequence of instructions to be executed. The
testbench does not implement a traditional memory in which
a program is stored. When the processor reads instructions or
data, it is provided a pseudo random value not related to the
issued address. Two instruction fetches to the same address
can thus result in different instructions. A read operation will
not return the same data as accessed by previous read or
write operations. If an instruction was read from an address
at one time, the test sequence might very well result in a data
fetch from the same address later on, effectively eliminating
the notion of data and program address space.

The deterministic flow of a program is abolished, allowing
any sequences of jump and call instructions to be realised. If
a jump is made to the same address as the current program
counter value, the subsequent instruction fetch to the same
address will generally result in the return of a different
instruction. There is therefore no need for analysing jump
sequences to prevent that infinite loops occur, since this risk
is eliminated trough the merge of the code generation and
execution.

A subroutine call or exception handling routine does not
have to return to the original program flow as is in real
executable software, since there is no program flow what so
ever in our approach. As a result, the significance of data

such as operational parameters is ignored, allowing e.g
division by zero without disturbing the simulation.

3.2 Coping with different abstraction levels

As said in the introduction, for complex designs it i
necessary to obtain a correct reference model that will
used throughout the development process. By describing
reference at a high abstraction level, the functionality is n
obscured by implementation details which reduces t
possibility for introduction of errors. However, the differenc
in abstraction levels will most likely result in behavioura
differences between the two models.

For example, if the test object reads a group of operands
different order than the reference, the computed result w
still be the same. The same applies to prefetched instructi
that are not executed as well as speculatively execu
instructions which are discarded. An example of the former
when one of the models makes a prefetch of an instruct
superseding a branch instruction which is not execut
because the branch is taken, whereas the other model d
not make the prefetch at all; the overall program flow st
remains the same.

To cope with the behavioural differences between the tw
models, the testbench has to analyse actively in real-time
response from the test object and modify the stimuli
necessary. By applying certain tolerance levels for su
deviations instead of immediately reporting an error a
terminating the simulation, much of the associated analy
work can be automated.

3.3 Verification acceleration

The engineering task is then to develop a stimuli generat
infrastructure that spawns the test suite and handles differ
behavioural responses from the two models. Arbitrarily lon
simulat ions can then be performed without huma
interventions. As previously mentioned, the simulation tim
is not the limiting factor, testbench development is th
bottleneck. We move the test case generation to the ac
simulation phase, allowing more test cases to be simula
with less development effort and therefore accelerating
verification process.

Although the method might seem to be simple, applying it
an actual real-life project is not always straightforward
will be shown in the following section.

4 Verification of a Mil-Std-1750 microprocessor

The objective was to independent verify the correctness
the instruction set implementation of a microprocess
model, ignoring all signal properties such as timing an
waveforms.

The object to be verified was a VHDL model, intended fo
board level simulation (Ref. 7), of an existing 16-b
microprocessor according to the MIL-STD-1750 instructio
set standard. The model was described at a high abstrac
level, although encompassing architectural bit-level detai
The model was capable of executing approximately o
thousand ins t ruc t ions per second when run on
SparcStation 10.

t
ry

s

s of
an

t
on
d.

for
ic
ns

 in
the
 of
ed
ted
l
nd
ject
he
ow
iour

 the
s
the
as
 the
dy
set
nce
at

uld

e by
nch
he
se
ue,
ed

n-
w
on
 to
ce,
The board level model had already been extensively verified
as part of the development. The foundry production test had
been applied to the model, including an instruction test
verifying the standard. In addition, specific tests for each
instruction implemented had been devised, including testing
of boundary conditions etc. The timing and bus cycle
behaviour had also been verified. Finally, the model had
successfully executed simplified application software in a
board level system.

The reference model had been converted to VHDL from the
design data base used during the development of the existing
hardware. The model was slow, only executing a few
instructions per second when run on a SparcStation 10.
Several iterations of the hardware had already been used for
some years.

It should be noted that in this project the reference model was
much slower than the test object, since the task was to verify
a fast board level model. This does however neither affect the
approach nor the conclusions from this exercise, since in an
active device development the roles would simply be
reversed for the two models.

4.1 The verification approach

The verification was performed without acquiring any
implementation knowledge of the test object or the reference
model. It was assumed to be sufficient to understand the
instruction set architecture, treating the two models as pure
black boxes. In this way, any correlation between the
implementation and the verification was eliminated.

The testbench was implemented exclusively in VHDL, using
no external software tools such as compilers, assemblers or
linkers. Both models were simulated simultaneously on the
same simulator. This was necessary in order to handle
differences in timings, number of clock cycles per instruction,
bus cycle behaviour, and in instruction and data flows.

We initially took a broadside approach to pseudo randomised
stimuli generation, with no or only a few limitations during
instruction and data flow generation. To allow long
sequences of legal (and illegal) instructions the testbench had
to be able to accept out of order instruction and data fetches,
handle allowable mismatches between the two models, etc.
The objective was not to halt the simulation immediately, but
to try to recover and continue if the deviations upon detection
of a discrepancy were found acceptable. The goal was to
accelerate the verification process by reducing the time spent
on the testbench development and instead spend the available
time on simulation and error analysis.

4.2 Instruction set data base

To be able to handle behavioural deviations between the two
models, a detailed instruction set data base was described in a
VHDL package. The data base was used during generation of
the instruction and data sequences, as well as during error
reporting that will be discussed later.

One of the primary functions of the data base was to allow
the code generator to know what kind of information the
microprocessor would expect during a bus access. For
example, it was possible to identify whether to provide an
opcode or a parameter to the microprocessor during an

instruction fetch. This was used for several differen
purposes, one being the possibility to exclude arbitra
instructions from the verification if necessary.

The following list shows some of the information that wa
stored in the data base for each instruction:
• mnemonic, description and usage;
• opcode, number of operand accesses and data types;
• address mode and register usage;
• potential exceptions.

4.3 Instruction filtering

The instruction set data base allowed selection of subset
the available instructions. It was possible to exclude
instruction from the test set if it was found working
incorrectly. This allowed further verification runs withou
generating more errors of the same type. The verificati
could thus continue while the model was being correcte
The instruction in question could then be enabled again
further verification. This made it possible to target specif
instruction types, e.g. jump, etc., or to select only instructio
with previously erroneous implementations.

4.4 Instruction sequence generation

The generation of the instruction sequence was performed
two steps. Firstly, a partial sequence was generated for
reference model which was executed an arbitrary number
instructions ahead of the test object. The generat
instruction and data flow was stored together with associa
address information in a first-in-first-out type of virtua
buffer. The test object was then fed with the instructions a
data from the buffer as they were accessed. The test ob
was not bound to execute the buffered instructions in t
same order as they were stored. This was done to all
mismatches between the test object and reference behav
which will be described further on.

The testbench decoded the bus cycles as generated by
reference model, to know what kind of information wa
expected. When a compound instruction was fetched,
whole instruction with all associated parameters w
generated and remembered. As the reference fetched
remaining parts of the compound instruction, the alrea
generated information was dispatched. The instruction
data base was instrumental in the generation of the refere
instruction and data sequences. The selection of wh
instruction to generate was done pseudo randomly, but co
be controlled by the aforementioned filtering capability.

The testbench also decoded the bus cycle accesses mad
the test object. If an instruction was requested, the testbe
would first see if the provided address was available in t
buffered instruction sequence and would in such a ca
dispatch it. If the requested address was not first in the que
the preceding instructions would be reported and remov
from the buffer, allowing instructions to be dropped.

If the requested address was not in the buffer, a no
operation instruction would be issued, for example to allo
the test object to have a different prefetch implementati
than the reference. This also allowed the test object
generate an exception not previously done by the referen
without immediately upsetting the simulation.

ted
h

ols

e
the
re.

the

ed,
the
els.
 of
ns
ible
ted
all

h

ach
r

ign

en
 at
e
ken
e
er

n
s it
g

 the
e
een

f
 on
rk
s
an

at
m
cial
ent
de
tal,
A similar approach was followed for data fetches, but in this
case buffered data were not immediately dropped to allow
out of order operand fetches. Special provisions were
implemented for atomic operations etc.

All the aforementioned mismatches between the two models
were tolerated up to a user defined acceptance level, before
the affected test sequence was terminated and the failure was
reported.

4.5 Data generation

Although pseudo random generation of operands and other
data should had been straight forward, some instruction set
particularities complicated the task. To obtain deterministic
results for some floating point operations, the operands, in
both the memory and internal registers, had to be normalised.
If this was not performed, the outcome from the computation
would had been unspecified and different behaviours could
be expected for the two models. Some of the data structures
required alignment to even addresses when stored in memory
and registers for correct operation, which also had to be
handled explicitly in the testbench.

Purely random verification of a floating point unit is unlikely
to find all errors. For example, there is only a small chance
that the mantissas of two random operands will overlap and
result in an actual calculation (Ref. 5). To overcome this
limitation and to excite corner cases, we generated weighted
pseudo random operands in the testbench, such as small or
large negative and positive numbers, and floating point zero.

4.6 Observability and reporting

To improve the possibility for detecting errors, the visibility
of the internal state of the microprocessor was increased by
periodic readout of all internal registers. The instruction set
architecture conveniently allowed all internal register to be
written to memory by issuing a single instruction. The
purpose was to allow the testbench to catch errors located in
flags etc., that might not propagate to the memory before
being overwritten. Note that no changes in the black box
models were required.

An important trade-off to be made is how many random
instructions should be executed before the internal registers
should be read out. By al lowing a large number of
instructions between register dumps, errors might be masked
by subsequent instruction execution. By only executing a few
instruct ions between register dumps, errors due to
interactions between instructions might be masked and the
efficiency decreases due to overhead. The testbench
implementation allowed an arbitrary number of instructions
to be executed between internal register dumps.

To assist debugging, the testbench generated a disassembled
listing of the executed instruction sequence. Not all code was
reported, only the last relevant part before a major deviation
occurred between the test object and the reference. The
disassembly was also performed in VHDL, using the
instruction set data base. The listing further indicated what
instructions or operands had been dropped or added to make
up for the differences in model behaviour, what data
deviations had occurred and where exception handling had
taken place in the form of a call to a interrupt routine.

A simple profile of the executed instructions was also crea
during the simulation, indicating how many times eac
instruction had been executed. More advance profiling to
have been reported (Ref. 2, Ref. 4),

4.7 Results

The verification resulted not only in the discovery of a larg
number of deviations between the board level model and
reference, but also revealed a few errors in existing hardwa
Needless to say, the functional errors were corrected in
next revision of the microprocessor.

There were also several non-errors that were report
requiring some effort to analyse and occasionally to adapt
testbench to cope with legal deviations between the mod
After a couple of iterations, the testbench was capable
handling all acceptable deviations and long simulation ru
could then have taken place. This was however not poss
since new errors were regularly discovered which preven
any long instructions sequences, except for when
erroneous instructions were disabled.

The method will generally report many errors for eac
incorrect instruction implementation, which will require
extensive analysis before resolving the cause behind e
repor t . The approach i s consequent l y su i ted fo
demonstrating that there are no or few errors left in a des
at the end of the development.

Considering that the board level model had already be
thoroughly verified, the selection of the approach was right
that t ime. If knowing that so many errors would b
discovered, perhaps a simpler approach could had been ta
to eliminate the bulk of the problems before employing th
presented approach to find the remaining errors at a low
expense than what had been the case.

5 Related verification cases

The program-less approach is not limited to VHDL, but ca
be applied to any hardware description language as long a
is possible to generate the stimuli on the fly, while takin
into account deviating responses from the test object and
reference. The following two examples will illustrate how th
approach has been used, or how it sometimes has not b
possible to use due to surrounding constraints.

5.1 Microcontroller

To illustrate some limitations with off-line generation o
pseudo random programs, we have include an example
how the discovery of an error caused lengthy analysis wo
due to development tool limitations. A microcontroller wa
developed based on a synthesisable VHDL core from
intellectual property provider.

The test object was first subjected to all verification suits th
were provided with the core, followed by pseudo rando
testing. The reference was represented as a commer
hardware emulator that was part of the software developm
environment. The stimuli was generated with a custom ma
C program and was output as an executable binary. In to
three errors were discovered by this additional verification.

ing

ct
ent

ion
n
f
st

s
rors
e
d

 late
r a
rm
nse
he
are.

ces
ral
l is
n
s’
ser
or
he
that
w
for

e
64

l

n
rd

rs,

r

One error in the core was located in a jump instruction,
resulting in an incorrect program counter update. Since the
stimuli was executed as a program, the jump introduced an
infinite loop that never terminated. The simulation run for
several hours before it was decided to abort it. Since the
program did not terminate, there was no indication of what
had gone wrong. To trace the problem, the stimuli was
disassembled and run with a software debugger coupled with
the VHDL simulator until the incorrect jump was identified.
What further complicated the analysis process was that the
available assembler was not able to generate the jump
instruction under the same conditions as during the pseudo
random test. A diagnostics program had to be assembled by
hand before the cause of the error could be confirmed.

This example illustrates that pseudo random generators
which rely on software tools are subject to a number of
limitations. The problems with locating the error would have
not occurred if the instructions would have been generated on
the fly as in the program-less approach, since an infinite loop
would not have been created. The execution would have
terminated as soon as the number of deviating addresses
issued during instruction fetching would have exceeded an
arbitrary tolerance level.

5.2 Digital signal processor

A simplified version of the approach was applied during the
validation of a digital signal processor. The device in
question had been transferred from a commercial technology
to a radiation-tolerant process. The random stimuli were
applied to the first prototype devices and to the already
existing commercial counterpart. The objective was to prove
that the two devices were identical, rather than that the new
device fulfilled all user requirements. In this setup, the
applicability of the method was limited since program-less
verification could not be applied without redesigning the
hardware. This was however compensated by the speed of the
execution, which allowed pseudo random instruction suites
with lengths widely superseding what is feasible to simulate.

The only discrepancy discovered between the reference and
the test object was related to one single arithmetic operation,
where one bit in a status register was flagged one clock
period too late. It turned out that the reference was of an
older revision of the processor than what had been used for
developing the radiation-tolerant device. The error was thus
located in the reference and not in the test object. In fact, the
only documented difference between the two revisions was
the anomaly in said arithmetic operation. This single
anomaly caused the test program to report many errors,
which indicates that the effectiveness of the verification
approach was high.

6 Conclusions

A program-less approach to microprocessor verification
using pseudo random stimuli generation eliminates many of
the limitations associated with verification through program
execution and with related software development tools.

As illustrated in the examples, the method will generally
repor t many er rors for each incorrect ins t ruct ion
implementation, which will require extensive analysis before
resolving the cause behind each report. The method is
therefore most suited for verifying that there are no errors in

a design, rather than as a means for identifying errors dur
the device development.

For complex designs it is necessary to obtain a corre
reference model that can be used throughout the developm
process. By describing the reference at a high abstract
level, the functionality is not obscured by implementatio
details which reduces the possibility for introduction o
errors. The difference in abstraction levels will however mo
likely result in behavioural differences.

Although the method tolerates behavioural difference
between the test object and the reference, analysis of er
discovered by pseudo random stimuli can be very tim
consuming. A design should therefore be properly verifie
throughout the development phase, since errors detected
in the verification process are costly to handle (Ref. 8). Fo
few of the discussed examples it was not possible to perfo
program-less stimuli generation that adapted to the respo
from the execution. The main reason for this was that t
reference or test object was represented as existing hardw

The need for a fast reference model when developing devi
in excess of half a million gates has been claimed in seve
reports (Ref. 2, Ref. 5). In most cases the reference mode
developed in the C language to offer high simulatio
performance as compared to VHDL. Our and other
experiences are that the simulation time requires a les
part of the verification phase than what is needed f
developing and debugging of testbenches (Ref. 1). T
conclusion is that the speed of the reference model is not
important when the test object is modelled at a lo
abstraction level and will thus in any case be responsible
most of the simulation time.

References

1 Functional Verification of Large ASICs, A. Evans et al.,
Proceedings of the 35th DAC, 1998

2 I'm Done Simulating; Now What? Verification Coverag
Analysis and Correctness Checking of the DECchip 211
Alpha Microprocessor, M. Kantrowitz et al., Proceedings
of the 33rd DAC, 1996

3 Hierarchical Random Simulation Approach for the
Verification of S/390 CMOS Multiprocessors, J. Walter et
al., Proceedings of the 34th DAC, 1997

4 Code Generation and Analysis for the Functiona
Verification of Microprocessors, A. Hosseini et al.,
Proceedings of the 33rd DAC, 1996

5 Verifying the PA-8000's FPU, D. Smentek et al., Integrated
System Design Magazine, March 1997

6 Functional Verification Methodology of Chameleo
Processor, F. Casaubieilh et al., Proceedings of the 33
DAC, 1996

7 Using VHDL for Board Level Simulation, S. Habinc,
P. Sinander, IEEE Design and Test of Compute
Autumn 1996

8 A C-Based RTL Design Verification Methodology fo
Complex Microprocessors, J. Yim et al., Proceedings of the
34th DAC, 1997

ftp://ftp.estec.esa.nl/pub/vhdl/doc/BoardSim.pdf

	Abstract
	1 Introduction
	2 Current verification approaches
	2.1 Manual stimuli and inspection
	2.2 Extension for regression verification
	2.3 Automated testbenches
	2.4 Pseudo random stimuli

	3 Accelerated verification approach
	3.1 Program-less pseudo random stimuli
	3.2 Coping with different abstraction levels
	3.3 Verification acceleration

	4 Verification of a Mil-Std-1750 microprocessor
	4.1 The verification approach
	4.2 Instruction set data base
	4.3 Instruction filtering
	4.4 Instruction sequence generation
	4.5 Data generation
	4.6 Observability and reporting
	4.7 Results

	5 Related verification cases
	5.1 Microcontroller
	5.2 Digital signal processor

	6 Conclusions
	References

