
MOST SERIOUS ERRORS
encountered in ASIC (application-

specific integrated circuit) devel-

opments originate from unclear or

incorrectly implemented specifi-

cations. To allow independent

evaluation of a device’s function-

ality, the European Space Agency

(ESA) normally requests a VHDL

model before a company starts the

detailed design. This allows ESA or

another company to verify the

functionality. (For more about ESA

and its choice of VHDL, see the

box.)

A logical follow-on activity to us-

ing VHDL modeling for ASIC de-

sign verification is to model and

simulate complete board designs.

Board level simulation
At this level we simulate the func-

tionality of one or several printed circuit

boards built with standard components,

possibly incorporating ASICs and appli-

cation-specific standard products

(ASSPs). Board level simulation is also

called rapid or virtual prototyping1 and

sometimes system simulation. Board lev-

el simulation’s purpose is to verify the

correct behavior of the board—that

components operate as intended in se-

lected configurations.

When board designs contain proces-

sors, it is possible to verify the hardware-

software interaction, for example

verifying the programmability of ASIC

registers, the operation of software dri-

vers, and so on. In addition, we can

evaluate the performance of the proces-

sor board. Board level simulation will

also yield information about timing

correctness, though it can proba-

bly not fully replace worst-case tim-

ing analysis for high-reliability

applications such as those in

spacecraft.

To avoid unreasonable expec-

tations of board level simulation,

we must understand what it does

not comprise. It does not simulate

system performance, including as-

pects in which neither accurate

data nor clock behavior are essen-

tial, such as throughput and laten-

cy. Neither does it comprise

explorative simulation for defining

system baselines.

By employing board level simu-

lation, designers can integrate and

test printed circuit boards early,

since the first design and verifica-

tion loop does not need manufactured

hardware. Designers can therefore post-

pone manufacture until the specifica-

tions settle and they have verified all

interfaces. Board level simulation sup-

ports a top-down methodology allowing

simulation of unimplemented boards,

which enables designers to work with

incomplete specifications of a system or

component and to verify functionality

Using VHDL for Board
Level Simulation

V H D L

66 0740-7475/96/$05.00 © 1996 IEEE IEEE DESIGN & TEST OF COMPUTERS

Prototyping is necessary for
successful development of printed
circuit boards built with complex

components such as
microprocessors, ASICs, and
ASSPs. The European Space

Agency uses VHDL models for
board level simulation, optimizing

such models for high functional
accuracy and simulation

performance.

SANDI HABINC

PETER SINANDER

European Space Agency

FALL 1996 67

earlier. In large developments with

boards from several different subcon-

tractors, designers can supply users with

simulation models of a board design for

early system verification. Board level

simulation also allows designers to pro-

totype manageable parts of larger sys-

tems. When designing an ASIC,

designers can verify its operation in a

board design before manufacture. Using

models for board level simulation be-

fore first silicon can save significant

schedule time.

Designers can simulate situations

that are difficult to capture in real hard-

ware due to timing synchronization and

so on. This results in a more thorough

verification of the board design and

also provides the designer with unlim-

ited probing and acquisition points,

which is not always possible in hard-

ware. It can also provide visibility into

the internal state of different compo-

nents, such as registers and state ma-

chines.

Models for board level simulation

can provide limited simulation support

during parallel development of hard-

ware and software.2 This type of simu-

lation usually takes a long time to

perform with such models, but delivers

high functional and timing accuracy.

However, by carefully selecting which

software parts to simulate, we can re-

duce the simulations to manageable

times. For instance, it may not be feasi-

ble to boot a complete operating sys-

tem, but we could verify all the

firmware and hardware drivers.

Board level simulation enables hard-

ware and software designers to work

together at an early stage and solve in-

terface problems before committing the

hardware to manufacture. Doing so is

especially important with board designs

ESA has 14 European member
states; Canada is an associate mem-
ber. It promotes cooperation among the
member states in space research and
technology and their space applica-
tions, in particular for scientific pur-
poses and space application systems.
Since ESA’s charter is to develop the
member states’ space industry, it
awards contracts for major technical
work to external companies that func-
tion under its supervision.

ESA has several establishments in Eu-
rope, one of which is the European
Space Research and Technology Centre
(ESTEC) located in the Netherlands. ES-
TEC's Microelectronics and Technology
section (WSM) deals with design
methodology in microelectronics, devel-
opment of very large scale integration
(VLSI) components, and related topics.

Electronic equipment and compo-
nents are an increasingly important
part of spacecraft, as in most other
modern, complex systems. Such elec-
tronics frequently employ special sys-
tem concepts, integrated circuits, and
process technologies due to the harsh
environment in space, particularly the
radiation effects. It is also practically
impossible or extremely expensive to

service a spacecraft after launch. Thus,
special ICs are developed by the space
industry and, in Europe, often under
ESA contract.

Companies working with ESA range
from large, multinational corporations
with decades of relevant experience to
small companies entering new business
areas. In comparatively new fields such
as ASIC design and VHDL modeling,
ESA must therefore often actively sup-
port the development work. ESA thus
tries to establish concepts and method-
ologies helping companies gain profi-
ciency and increase their efficiency.
Implanting such knowledge in compa-
nies is beneficial to ESA, ultimately re-
ducing development risk, cost, and
schedule.

Since various companies design
ASICs, ESA must allow them to use dif-
ferent design tools. It is neither desir-
able nor feasible to force all companies
to use a specific vendor’s tools. In the
early 1990s, when the agency was for-
malizing the ASIC design process for
ESA developments, VHDL was the only
hardware description language sup-
ported by multiple tool vendors and
therefore the natural choice.

VHDL 931 is the baseline today to re-

duce long-term maintenance costs for
VHDL models. After delivery, ESA can-
not require the original model devel-
oper to update the model when
needed. Although the agency initially
intended to use a VHDL 87 baseline,
we changed to VHDL 93 when it be-
came clear that updating practically
every VHDL 87 model would be nec-
essary for compatibility with the current
standard. Syntax and semantics differ-
ences exist between the two versions,
and although these changes are tech-
nically minor, it would be a major task
to update and subsequently verify a
large number of VHDL models from
various companies.

Unfortunately, few vendors have
adopted VHDL 93. For the standard’s
next update, we consider it extremely
important to ensure that only features
likely to gain vendor support become
part of the update. An update without
supporting tools would be a failure.

Reference
1. IEEE Std 1076-93, IEEE Standard VHDL

Language Reference Manual, IEEE,

Piscataway, N.J., 1994.

European Space Agency

V H D L

68 IEEE DESIGN & TEST OF COMPUTERS

incorporating ASICs because changes

late in the design process cause signifi-

cant schedule impacts and additional,

nonrecurring engineering costs. This

type of simulation will become more at-

tractive with the continuously increas-

ing speed of workstations and

simulators. Figure 1 shows some fea-

tures that concern designers at this sim-

ulation level; these include

■ the functional interaction and tim-

ing aspects between components

■ component internal states, for ex-

ample, for finite-state machines

■ occurrences of interrupts, excep-

tions, and other asynchronous

events in the components

■ instruction tracing, disassembly,

and register access for processors

on the board

A major issue for board level simula-

tion is the availability of simulation

models for board components. Despite

the commercial models available for

many standard components, board de-

signs increasingly incorporate ASSPs,

ASICs, and other unusual devices.

VHDL models are therefore an interest-

ing alternative when no models are

available, the typical case for almost all

components used in a spacecraft. Using

VHDL greatly reduces the effort re-

quired to support several platforms and

simulators, since VHDL models require

only minor modifications, if any, for

each new simulator. ESA has therefore

chosen VHDL as the language for board

level simulation in ESA-funded devel-

opments. See the Case studies box for

examples of board level simulation.

Modeling for functional accuracy
Component behavior modeling, sim-

ulation performance, and ease of use

for board designers characterize a mod-

el for board level simulation. The mod-

el’s behavior as viewed from the outside

should be the same as that of the actu-

al component and include the compo-

nent’s full functionality. Such models

need not implement specific test modes

used only for manufacturing test, but

their interface signals should have ex-

actly the same waveform behavior as

the component. Models for board level

simulation must have a common inter-

face, model timing features (setup and

hold times, output delays, and so on),

and handle unknown values for the

model’s inputs and outputs. These re-

quirements also apply to modeling in

VHDL.

We consider bus functional models

(sometimes called bus interface mod-

els) as reduced models for board level

simulation because they model only

the timing and behavior of component

interfaces. Designers typically use them

for very complex devices, such as

processors, in which case instruction

execution, interrupts, and so on are not

available or not implemented in the

model. However, they do not model the

component’s internal functionality and

thus do not provide the full potential of

board level simulation (such as for soft-

ware execution).

Models for board level simulation

must implement the functional behav-

ior of components accurately enough

to allow verification of board designs

for functionality and timing. Simulating

boards using models with high accura-

cy will reduce the errors in the manu-

factured board. However, a model error

can cause verification to miss board de-

sign errors. Or, an erroneous model can

also indicate errors in an ASIC or print-

ed circuit board when none actually ex-

ist. This can cause designers to

introduce design errors into an origi-

nally correct board.

There are two major modeling ap-

proaches: independently developing

the model from a functional specifica-

tion or data sheet, and enhancing an ex-

isting model at the register-transfer level

(RTL) or higher. Board level develop-

ers must use the first approach when no

RTL model or only a gate level model is

available. Figure 2 illustrates some

sources of modeling information.

Developers should take care when

developing a model with only a data

sheet as input, because it may not fully

describe the component. The data

sheet writers may have left out details

or introduced errors, and more chances

for misunderstandings occur. Or, they

may have simplified the data sheet in-

formation. For example, an interface

Entering state S1
Entering state S3
Entering state S5
Entering state S0

SW C2H=11000010B
R0 34H=00110100B
R1 F3H=11110011B
R2 ECH=11101100B

Interrupt 2
Interrupt 5
Interrupt 1
Interrupt 2

LD R0,R3,0EFFH
LD R1,R2
OR R0,R1,01BCH
ST R0,R3,0EFFH

Figure 1. Designer’s view of a board design when using board level simulation.

FALL 1996 69

Two ESA studies demonstrate board
level simulation.

Data-handling computer
This activity, begun in 1994, aimed

to design and simulate a fictitious com-
puter for data handling on a spacecraft
(Figure A). The board design incorpo-
rates a MIL-STD-1750 processor, mem-
ories, a bus interface for accessing other
units on the spacecraft, four ASSPs im-
plementing the up- and down-link com-
munication protocols, and some glue
logic. Two contracting companies wrote
models for the processor, memories, and
glue logic based on data sheets and op-
timized them for high simulation per-
formance. In addition, they wrote basic
software for board design verification
in assembly code.

The board level simulation detected
about 10 errors in the hardware design
and in the software. Hardware errors
ranged from devices not being reset and
incorrectly activated buffers to omissions
in the board specification. While the
software was intentionally very simple,
it discovered several errors in the hard-
ware-software interaction.

In addition to demonstrating board
level simulation, this activity identified
several issues related to complex mod-
els for board level simulation. For one,
it currently seems difficult to reach more
than 1,000 simulated instructions per
second for a timing-accurate VHDL
model of a processor. This low limit
seems due to limitations in the signal
scheduling of current VHDL simulators.
As reference, an instruction simulator in
VHDL (one without accurate timing sim-
ulation or signal scheduling) has rough-
ly an order of magnitude higher
performance. An instruction simulator
written in C has up to two orders of
magnitude higher simulation perfor-
mance. This suggests that high-level op-

timization of current VHDL simulators
should yield significant improvements.

We also found that developing com-
plex models from their data sheets re-
quires large modeling and verification
efforts. As an example, the original ver-
ification for the processor model was ex-
tensive. It included test stimuli for each
instruction as well as verification using
part of the functional production test vec-
tors. Nevertheless, we found many er-
rors when later validating the model
with the device’s original design data-
base, for which we generated pseudo-
random sequences of several million
instructions.

Spacecraft interface ASIC
In another case, a European space

company successfully demonstrated the
benefits of board level simulation in de-
signing an ASIC for use by several satel-
lites. The ASIC interfaces to several
components using different protocols in
an on-board data-handling system,
and converts between these protocols.

Simulating the board containing the

ASIC as well as components on other
boards interfacing with it verified the
design. Models developed according to
the ESA guidelines represented two of
these components. A second company
developed one of these models, and
ESA developed the other in house.

The ASIC simulations and these mod-
els revealed two errors in the ASIC de-
sign that designers could correct prior to
manufacture. The errors occurred in the
ASIC subblock interfacing the models
developed for board level simulation,
and undocumented component behav-
ior caused them. Accurate modeling of
the reset sequence for the two models
and the start-up procedure for one of
the protocols enabled designers to dis-
cover the errors.

Such success demonstrates the im-
portance of modeling for functional ac-
curacy. These models also allowed the
company to generate test vectors for the
printed circuit board containing
the ASIC. Automatic test equipment uses
the vectors to test the board during
manufacture.

Case studies

ROM

RAMCPU

Spacecraft data-handling computer

Test
generator

and
checker

Down-link
encoder

Down-link
multiplexer

Formatter

Formatter

Bus
interface

Up-link
decoder

Figure A. Fictitious computer for spacecraft data handling.

V H D L

70 IEEE DESIGN & TEST OF COMPUTERS

protocol description may be more con-

straining than the actual design re-

quirements, resulting in a partially

correct model.

Designers normally write RTL models

for synthesis, which conflicts with the

simulation performance required for

board level simulation. When revising

an RTL model, we must also protect the

design information because the resulting

model might still be synthesizable.

However, many simulation performance

enhancements will reduce the proba-

bility that others can reverse-engineer a

component. Thus, the main develop-

ment effort would be to optimize the

model for simulation performance, im-

plement the model interfaces, and de-

velop the verification stimuli.

Occasionally, the behavior that the

RTL model describes and the data sheet

are inconsistent. The data sheet may

omit or simplify some of the device’s

functionality, such as proprietary design

features. In such a case, we recommend

modeling the full functionality and is-

suing a warning when an inconsisten-

cy with the data sheet occurs. We prefer

this to excluding the function and con-

sequently having an incorrect simula-

tion. Also, the inclusion of unsupported

or undocumented component func-

tionality in the model for board level

simulation could simplify its compari-

son with an RTL model during verifica-

tion with the same set of stimuli. The

more accurately the model reflects ac-

tual hardware, the more likely it is that

simulation will detect problems in a

board design.

Modeling for simulation
performance

Present workstation and VHDL sim-

ulator performance provides a means

for simulating board designs compris-

ing several complex components such

as microprocessors and ASICs.

However, to tap this simulation perfor-

mance, we must efficiently code mod-

els for simulation. Though defining an

absolute requirement for the simulation

performance of a model for board lev-

el simulations is not easy, we want to

avoid unnecessarily slow or cumber-

some implementations.

We based the guidelines presented

next on our experience and on prelim-

inary results from an ESA activity. This

is not an exhaustive list of issues to ad-

dress when tuning a model for simula-

tion performance, and each suggestion

might not apply to all situations and sim-

ulators. The best advice is to use com-

mon sense in cases of uncertainty. A

good way to choose between two ap-

proaches is to simulate both and then

select the most efficient one. Develop-

ers should base the stimuli for such

comparative simulations on possible

and probable model inputs. Different

simulators have different performance

characteristics; to obtain a complete

picture, developers should perform sim-

ulations with all usable simulators.

Many rules and techniques for opti-

mizing software (such as loop unrolling,

code inlining, and so on) also apply to

models with good simulation perfor-

mance, since VHDL has many pro-

gramming-language characteristics.3 In

general, VHDL simulators have less

built-in optimization capabilities than

state-of-the-art optimizing compilers for

software. It is therefore often beneficial

to perform optimization manually at the

source code level. In addition, calls to

subprograms declared in packages are

difficult for the analyzer to optimize,

since the analyzer may reanalyze the

package body without reanalyzing the

code making the call. Model develop-

ers could therefore manually replace

subprogram calls by in-line coding in

the source code to optimize a model for

simulation performance.

Standard packages, such as

IEEE.Std_Logic_11644 and IEEE.Vital_

Timing,5 are sometimes accelerated for

simulation performance. But since this

is not always the case, it may be neces-

sary to use other subprograms when

simulation performance is an issue.

Only execute code when neces-

sary. A fundamental rule when mod-

eling for simulation performance is to

execute code only when necessary.

Therefore, such models should use con-

ditional statements to reduce unneces-

sary code execution. An outer

conditional statement should reduce

the necessity of evaluating enclosed

conditional statements. We accomplish

this with nested if and case statements,

Refinement

Specification

Verification

Validation

Gate levelRT level

Hardware

Board levelData sheet

process (Clk, Reset)
begin
 if Reset='1' then
 elsif Clk='1' then
 elsif Clk='0' then
 else
 end if;
end process;

Figure 2. Modeling information sources.

FALL 1996 71

ordering them so that the highest prob-

ability branches execute first and min-

imizing the complexity of conditional

expressions. We can assess the effi-

ciency of the conditional-statement or-

dering with a code coverage utility and

then often improve performance by re-

ordering the code or modifying the

structure of conditional statements. We

may also identify redundant or unnec-

essary code.

Preliminary results showed that a sig-

nal assignment is between one and two

orders of magnitude more costly in

simulation time than reading a signal or

variable in an if statement. This suggests

that it is possible to use large structures

of if statements to prevent unnecessary

signal assignments and still gain in sim-

ulation performance.

Regions of related code, such as tim-

ing and unknown checkers disabled via

generics, can benefit from placement

in separate processes. We use generate

statements to prevent them from exe-

cuting when not necessary, as Figure 3

shows. This is better than placing such

functions in a process and enabling or

disabling them with a conditional state-

ment, since the model will still invoke

the process for each event on signals in

the sensitivity list. The generate state-

ment around the process will exclude

the process from the simulation when

it’s disabled and thus eliminate its cost

when not in use. However, this ap-

proach will not always reduce the mem-

ory usage, indicating that it does not

completely exclude the code.

Use processes wisely. Each process

invocation has a cost in terms of simu-

lation performance, thus we should

keep the number of processes small.

Other literature suggests that sensi-

tivity lists have better simulation per-

formance than wait statements, since

an analyzer can more easily optimize a

sensitivity list than a wait statement. A

wait statement would require more han-

dling by the simulator kernel since the

core monitors signals listed in such

statements only after suspending the

process at that particular statement. The

overhead of enabling and disabling the

signal monitoring would thus not be

necessary for a sensitivity list. The sim-

ulator would always suspend and re-

sume a process from the same

statement, that is, at the end of the

process. Even using only one wait state-

ment in the process does not ensure

that the analyzer will implement the

process in the same way as one with a

sensitivity list. Moreover, for the same

reasons, sensitivity lists would thus be

more suitable than wait statements for

optimization by the simulator. Howev-

er, preliminary study results have not

shown any substantial difference in sim-

ulation performance between the two

constructs.

There is also the question of whether

to use sensitivity lists or wait statements

when tracking where to resume the sim-

ulation of a process after its suspension.

With a sensitivity list, we must provide a

structure of conditional statements to en-

sure that the simulation will resume at

the relevant code location, since the

process execution will always resume at

the begin statement. On the other hand,

using multiple wait statements will in-

herently track the relevant code loca-

tion, since the simulation of the process

will resume just after the wait statement.

This trade-off is not uncommon when de-

veloping board level simulation models

written on high abstraction levels and is

well worth considering when selecting

a modeling approach.

When using sensitivity lists, we

should group functionalities sensitive

to the same signals in the same process.

This reduces the number of processes

to invoke for each signal event. Fol-

lowing this approach, we would group

all functions related to the same clock

region in one process. Functions relat-

ed to different clock regions should be

located in different processes to avoid

invoking the process for each event on

the unrelated clocks. Including only

necessary signals in the sensitivity list

minimizes process invocation. Finally,

simulators treat most concurrent state-

ments in the same way as a process,

and they incur penalties when used.

Minimize the number of signals.

Code optimized for simulation perfor-

mance should use variables instead of

signals wherever possible, since each

signal requires specific handling (event

scheduling) that takes more memory

storage and instructions to execute. In

fact, preliminary results show that sig-

nals contribute significantly more to the

simulation time than variables do (see

Table 1). For these simulations we used

simulators based on native code gen-

eration, interpreted VHDL, and VHDL

translated to C and then compiled.

Optimized code should only use sig-

nals for communication between

processes. We could substitute VHDL

93 shared variables for signals, but

should not do so, since they could in-

troduce indeterministic behavior into

the simulation. Merging processes also

reduces the number of signals used for

TimingGenerate : if TimingChecksOn generate
TimingCheck : process(Clk, D, CS_N, RW_N)
begin

VitalPeriodPulseCheck(...); -- CS_N width for write access
VitalSetupHoldCheck(...); -- D setup & hold w.r.t. CS_N

end process TimingCheck;
end generate TimingGenerate;

Figure 3. Enabling and disabling of a process with a generate statement and the
generic TimingChecksOn.

V H D L

72 IEEE DESIGN & TEST OF COMPUTERS

communication. We should avoid sig-

nal-generating attributes such as ‘Stable,

since a scheduler must also handle im-

plicit signals and instead use the ‘Event

attribute where possible.

When moving a concurrent signal as-

signment into a process, model devel-

opers must ensure that it is not updated

more often than it would have been as

a concurrent assignment. Developers

should avoid reassigning a signal its cur-

rent value, since each such assignment

requires scheduling a transaction for

that signal. It is best to avoid recalcu-

lating a signal value expression too of-

ten when moving the signal assignment

into a process (say, calculating only

when the relevant input signals change

rather than for each clock cycle).

Similarly, removing static signals that

seldom change will not significantly

improve performance and may even

decrease it.

Select the right types. Numerical

data types such as integer normally re-

sult in better simulation performance

than arrays such as Std_Logic_Vector

and Bit_Vector. We could use numeri-

cal data types for extensive calculations

directly using the integer instructions of

the host machine’s processor. However,

when a simulation requires the bit field

information (as during instruction de-

coding in microprocessor models), we

must use numerical data types with

care. Retrieving such information from

an integer could be more costly than us-

ing an array in the first place. We must

assess the cost trade-off between di-

rectly performing calculations on

Std_Logic_Vector or performing type

conversions between Std_Logic_Vector

and integer accompanied by subse-

quent integer calculations.

Preliminary findings suggest that con-

verting a Std_Logic_Vector signal to an

integer variable, adding two integer

variables, and converting the result to

a Std_Logic_Vector variable can be as

fast as performing an addition between

two Std_Logic_Vector signals using un-

accelerated add subprograms. It will be

fruitful to readdress this issue in the fu-

ture because of the ongoing work to de-

fine a standard arithmetic package,

which will provide future simulator op-

timizations of arithmetic operations on

Std_Logic_Vector data types.

In general, a model should perform

type conversion and checking for un-

known values on inputs only when it

uses the data. However, adopting the

most efficient modeling strategy re-

quires knowledge of whether an input

changes frequently but is seldom read

by the model, or if it seldom changes

but is often read. A model should con-

vert the latter signal (a static mode pin,

for example) on each signal event. A

model should convert a signal that of-

ten changes but is only read under cer-

tain conditions (such as a data bus)

only when it actually needs the value.

This also avoids unnecessary asser-

tion reports, since the model checks for

unknown values only when it uses

them. For example, a conversion be-

tween Std_Logic_Vector and integer

combined with a check for unknown

values on data and address buses are

only necessary when the model reads

the values. This scheme has better sim-

ulation performance than if each signal

is converted upon each occurrence of

an event—such as a transition between

valid data, invalid data, and high im-

pedance on the bus.

Enumerated types have better simu-

lation performance than array types, es-

pecially for coding finite-state machines

using case statements. In such state-

ments, Bit_Vectors and Std_Logic_

Vectors are slower than enumerated

types by up to an order of magnitude.

Passing large data structures to sub-

programs as parameters decreases sim-

ulation performance as the data

structure size increases. This is another

consideration when deciding whether

to represent data as Std_Logic_Vector

or integer.

We should avoid using resolved

types internally in the model, since cal-

culations for the resulting value may

call a resolution function for each

event on the driving signals. Using un-

resolved types instead could increase

simulation performance. We should

therefore use resolved types only when

we need the resolution function. Of

course, this does not apply to variables,

since they need no resolution function

and thus cause no difference in simu-

lation performance.

We have observed no significant dif-

ference between using Std_ULogic and

using Std_Logic. Some simulators en-

sure that they do not invoke the resolu-

tion function for signals with only one

driver. This is analogous to replacing

such signals with their unresolved base

type (for example, Std_Logic signals

with one driver become Std_ULogic sig-

nals). An additional benefit of using un-

resolved types is the automatic

detection at analysis time of unwanted

short-circuit connections between sig-

nals, since a signal of an unresolved

Table 1. Ratio between simulation time for signal and variable assignments.

Native Interpreted
Data type code Compiled C VHDL

Bit 50 200 2
Std_ULogic 100 200 7
Bit_Vector, 32-element width 7 60 10
Std_ULogic_Vector, 32-element width 7 60 10
Integer 60 200 7

FALL 1996 73

type can only have one driver.

Optimize large data structures.

When modeling large memory ele-

ments, we must consider the host ma-

chine memory actually used by the

simulator. This is because the cache hit

ratio will decrease with more memory

use and cause a consequent decrease

in performance. It is not the size of the

memory allocated by the simulator that

is critical, but the size and distribution

of the frequently accessed memory.

Since memory allocation differs among

simulators, operating systems, and plat-

forms, it is difficult to determine a

method’s impact on simulation perfor-

mance. In general, we recommend

minimizing the memory usage; from

that point of view, signal declarations

cost more than variable declarations

(see Table 2).

We should compare actual memory

usage to the theoretical best value. For

example, an 8-element-wide register

would require at least 4 bytes of mem-

ory if modeled as a Std_Logic_Vector,

since 4 bits would represent each ele-

ment, covering all nine Std_Logic val-

ues. Some simulators represent each

Std_Logic element as a character,

which uses 8 bytes for the same regis-

ter. An integer could also represent the

same register contents; it would require

4 bytes in most simulators. Although this

is less than what the Std_Logic_Vector

representation uses, an integer cannot

represent all nine Std_Logic strengths.

Memory usage measurements for the

two approaches together with the level

of detail for the data representation

should indicate how to model such reg-

isters and larger memories.

Optimize expressions. The analyz-

er cannot evaluate globally static con-

stants, such as deferred constants, at

analysis time. It is possible to work

around this by declaring a local con-

stant that is computed once during the

elaboration from the deferred constant

or constants. For example, let “constant

LocalTpd: Time := GlobalTpd/2;” where

GlobalTpd is a deferred constant.

Some simulators do not optimize ex-

pressions for common terms, and we

must therefore manually optimize the

source code, as Figure 4 shows.

On the other hand, unnecessary use

of temporary expressions could reduce

simulation performance, since each

temporary variable assignment has a

certain cost (as Figure 5 shows). For cal-

culations performed with temporary sig-

nals instead of variables, the penalty is

worse.

Since VHDL specifies short-circuit

Boolean evaluation, terms that would

short-circuit an expression evaluation

should occur as early as possible in the

expression. VHDL specifies short-circuit

evaluation for Boolean and Bit types.

Logical operators (and, or, and so on)

do not support short-circuit evaluation

for Std_Logic, but we can accomplish

this in the manner illustrated by Figure

6. Signals A and B are of type Std_Logic,

but each expression within parentheses

results in a Boolean value. The or op-

erator will thus benefit from short-cir-

cuit evaluation if its left or operand is

true.

Evaluate simulation perfor-

mance. We should evaluate a model’s

performance during its development to

identify simulation bottlenecks and im-

prove the code. Stimuli generation

should not greatly influence perfor-

mance measurements, but still reflect

realistic simulation scenarios and exe-

cute large portions of the model.

Appropriate stimuli are crucial in ana-

lyzing simulation performance.

A code coverage utility is useful for

identifying simulation bottlenecks.

Such tools report the number of times

each statement has been executed dur-

ing a simulation, identifying frequently

executed statements.

Measure the cost of VHDL state-

ments. Clearly, it is difficult to provide

Table 2. Ratio of memory usage for array elements declared as signals and variables.

Native Interpreted
Data type code Compiled C VHDL

Bit 3 30 30
Std_ULogic 3 30 30
Bit_Vector, 32-element width 100 20 20
Std_ULogic_Vector, 32-element width 100 20 20
Integer 20 10 10

Result0 := A+B*C;
Result1 := D−B*C;
(a)

Temp0 := B*C;
Result0 := A+Temp0;
Result1 := D−Temp0;
(b)

Figure 4. Common term in two expressions
expressed as a temporary variable:
original (a) and optimized (b) code.

Temp1 := A+B;
Temp2 := C−D;
Temp3 := E mod F;
Result2:= Temp1/Temp2*Temp3;
(a)

Result2:= (A*B) / (C*D)*(E mod F);
(b)

Figure 5. Unnecessary temporary
expressions merged into one: original (a)
and optimized (b) code.

V H D L

74 IEEE DESIGN & TEST OF COMPUTERS

modeling guidelines that always opti-

mize simulation performance because

of the differences between VHDL sim-

ulators. Writing efficient VHDL models

requires knowledge of which con-

structs are fast and which ones to avoid.

While experienced model writers often

have a feel for efficient coding, little ex-

act information is available. The mod-

el writer therefore needs a cost list

ranking VHDL statements in terms of

simulation performance and memory

usage. Having such information based

on quantitative measurements and not

on assumptions can help the model

writer choose among different coding

variants for the best performance.

As a first step toward such a list, an

ESA-supervised study measured the

cost of several basic, low-level VHDL

constructs, such as variable and signal

assignments, processes with sensitivity

lists or wait statements, and so on. At

this time, only preliminary results are

available, some of which we have just

presented.

Practical example. When develop-

ing an ASIC or other component using

VHDL and synthesis, the objective is the

resulting component and not the VHDL

model. Developers often split the mod-

el into parts allowing several designers

to work concurrently on separate parts.

To facilitate both design and verifica-

tion, designers further break each part

into manageable-size code chunks.

They target optimizations to the syn-

thesis results, reducing area and/or in-

creasing the operating speed.

Sometimes designers also add func-

tionality for testability reasons. Since it

is not the primary objective of these

models, the resulting simulation per-

formance is often far below that of a

model coded for optimal performance.

While acceptable for simulations dur-

ing development, optimal simulation

performance is necessary for board lev-

el simulation.

We would like to automatically trans-

form a VHDL RTL model into a func-

tionally identical model with better

simulation performance. With an eye

toward that goal, we performed a series

of experiments on a model from an

ASIC development activity. The mod-

el’s characteristics included

■ split processes for state machines

(state and next state in different

processes) in a synthesizable, RTL,

VHDL model

■ 17,000 lines of code (including

comments) and 5,000 executable

lines (not including declarations,

netlists, and so on)

■ two hierarchy levels with one top-

level entity and eight instantiated

subcomponents

■ 66 processes (39 clocked) and 52

concurrent signal assignments

(only to rename signals)

■ 670 signals mainly of Std_Logic

and Std_ULogic_Vector type and

no variables

■ 17,000 gates in an ASIC for a com-

plex protocol machine with low-

speed serial data (50 Kbps) using

a 4-MHz clock

We performed simulations (see

Table 3) using simulators based on na-

tive code generation as well as inter-

preted VHDL and compiled C; the latter

two are different modes of the same

product. The simulated time was 1.4

seconds, which corresponds to 5.4 mil-

lion simulated clock cycles. All times

are wall clock time measured on a not

otherwise loaded SparcStation 10/71

(117 SpecInt92) and include the time

for the test bench. We made multiple

measurements for each case to elimi-

nate random measurements. The fol-

lowing describes the most significant

optimization steps.

Remove signal renaming. Of 670 sig-

nals, the original model developer in-

troduced 52 to change the name of

signals or their accessibility, that is, to

circumvent VHDL’s inability to read a

port of mode out. Using the same name

for a signal in the whole model and in-

troducing ports of mode inout allowed

us to remove these unnecessary assign-

ments. Although we removed less than

10% of the signals, the impact on simu-

lation performance was measurable.

Merge clocked processes. We re-

moved the hierarchy so a single archi-

tecture contained all processes. We

then merged all 39 clocked processes

into one, but permitted each code re-

gion to retain its surrounding clock

edge conditional statement “if

Rising_Edge(Clk) then.” The increase

in simulation performance is neverthe-

signal A, B: Std_Logic;
...
if (A='1') or (B='0') then

...
end if;

Figure 6. Example of an expression
benefiting from short-circuit evaluation.

Table 3. Simulation time before and after optimization for simulation performance.

Simulation time (hours)
Native Interpreted

Optimization type code Compiled C VHDL

Initial (no optimization) 1.7 2.5 8.2
Remove signal renaming 1.6 2.4 7.2
Merge clocked processes 1.2 2.0 6.5
Merge clocked-process code 1.0 1.3 5.5

FALL 1996 75

less significant, most likely due to the

high clock-to-data ratio.

Merge clocked-process code. In this

step, we replaced the 39 clock edge

conditional statements with one, en-

closing the code from the original 39

clocked processes. This basically elim-

inated 420 million calls to the

Rising_Edge function.

In this experiment, performance in-

creased by up to a factor of two, even

without spending any effort on opti-

mizing several processes and signals.

Models including each state machine

in a single process, rather than splitting

them into two parts (as in this case),

would benefit more from this opti-

mization. The modest improvement for

the interpreted-VHDL simulation prob-

ably stems from the interpreter over-

head, since these code transformations

have only a marginal effect on the

amount of pseudocode to interpret.

We implemented these optimization

steps in a way allowing automatic

VHDL model translation according to a

set of transformation rules. It is possible

to implement such a tool as an VHDL-to-

VHDL translator or as one optimization

step in a simulator. The latter would of

course be preferable since it would

benefit all users.

ASSP example. One of ESA’s con-

tracting companies modeled a space-

craft telemetry chip at several

abstraction levels, and we monitored

its simulation performance throughout

the development of the different mod-

els. The designers used RTL Verilog to

design this ASSP, although many blocks

resembled functions such as flip-flops

and low-level multiplexers. They then

translated the design to VHDL using

semiautomatic conversion so that ESA

could independently verify the design

on a VHDL simulator.

They then developed a model for

board level simulation for the ASSP fol-

lowing the ESA guidelines. The model

comprised multiple processes repre-

senting the major component blocks.

In parallel, we developed a model

that captures the ASSP’s synchronous

functionality in one process and all

asynchronous interfaces in another. We

further optimized this model by inte-

grating a memory under the ASSP’s ex-

clusive control into the process

containing synchronous functions. This

removed any overhead from signal as-

signments for memory interfacing and

also excluded the memory model from

the simulation.

The increase in simulation perfor-

mance between the different abstrac-

tion levels was remarkable (see Figure

7). The model for board level simulation

was approximately 100 times faster than

the RTL model, a performance increase

that makes board design simulations

feasible. The RTL model was only two

times faster than the gate level model

run on a conventional non-VHDL simu-

lator. This model, however, was at a low

abstraction level, and its translation

from Verilog was perhaps not the most

efficient. An RTL model written directly

in VHDL should normally be much

faster than the gate level model and not

fully so much slower than the board lev-

el model. The model with only two

processes and the integrated memory

was five times faster than the board lev-

el model. Normally, spacecraft elec-

tronics incorporate four to eight ASSPs

of this type per board; consequently, the

model’s performance greatly affects to-

tal simulation time.

Verification
We verify models for board level sim-

ulation to ensure that the model cor-

rectly represents the actual hardware’s

functionality and timing. We based the

method outlined here on the availabil-

ity of actual hardware or a low-level de-

sign representation (such as a gate

netlist) for comparison. When these are

not available, we base verification on

data sheet or similar information,

though this increases the potential for

errors and misunderstandings regard-

ing the functionality. In this case, we

emphasize performing verification in-

dependently of model development.

We have identified two categories of

verification. The first ensures that the

model has the same functionality as the

actual hardware and occurs during

model development. The second veri-

fies that the model works for a certain

combination of simulator and platform.

Users perform this work with test stim-

uli provided by the model developer.

We should perform the first category

of verification at the end of model de-

velopment and include all functional

test stimuli used during component de-

velopment. As a last verification, we

place the model in a typical board de-

sign and simulate it to detect problems

not covered by other test stimuli. The

set of test stimuli should serve as a main-

tenance vehicle for verifying the model

after modifications.

Users perform the second category

of verification when installing the mod-

el in their particular simulation envi-

ronment. They should use one or more

test stimuli provided by the model de-

veloper, reporting whether the model

passed or failed the test. Users do this

after installing a model because of dif-

ferences between VHDL simulators and

between different releases of the same

simulator. In addition, users tend to first

suspect the models when a problem oc-

curs during simulation. Users are more

likely to employ test benches that sup-

port automatic verification and require

minimum involvement on their part.

Such test benches may reduce the prob-

lems reported to model developers or

distributors, eliminating problems not

related to the model itself.

After the model’s delivery, the user

must verify that the model’s exact be-

havior remains unchanged. A useful

method involves sampling the outputs

on the test multiple input signature reg-

ister (MISR). We compare the result to

V H D L

76 IEEE DESIGN & TEST OF COMPUTERS

a predetermined signature to check

whether a model has passed or failed a

test. Compressing the output data elim-

inates large reference files.

Regression tests performed during

model or ASIC development could also

use this approach. Since such data

compression is most feasible for syn-

chronously sampled data, it is better to

use these regression tests for test bench-

es verifying functional behavior on a

per-clock-cycle basis.

The MISR needs sufficient stages to

allow for long test stimuli without sig-

nificant risk of error masking. A primi-

tive binary polynomial implementing a

maximum-length linear feedback shift

register provides the best structure.

Detailed information on these shift reg-

isters, the underlying theory, lists of

polynomials, and so on are available in

Bardell et al.6

Quantitative measurement methods

such as code coverage and gate level

fault coverage can evaluate a test stim-

ulus’ efficiency. A code coverage utili-

ty can help verify that a test stimulus

executes every line of source code in a

model, but does not tell how much of

the model functionality the stimulus

covers. We can better approximate the

functional coverage of a test stimulus.

We do this by applying the same stimu-

lus to a fault simulation of the gate lev-

el model and calculating its fault

coverage. This is of course only feasible

when a gate level model exists.

During the fault simulation, the test

stimulus should not activate functions

used for internal testability, such as

built-in self-test, when the test object

does not fully implement them.

Testability logic could cover faults with-

out these parts being verified for func-

tionality. This would result in fault

coverage not corresponding to the func-

tional coverage.

Verification’s purpose should always

be to ensure the model’s complete

functionality, and not solely to satisfy

code and fault coverage goals. These

are merely inexact measurements of

the verification’s efficiency.

Maintenance
For five years, ESA has received

VHDL models developed by contrac-

tors. These models helped us identify

new error types and unusual coding

styles to avoid. Although we could re-

gard some of these as minor coding

anomalies, they create long-term main-

tenance and code reuse problems,

among others. Such problems become

significant in handling a large number

of models from many different compa-

nies. Thus, in situations where we em-

ploy VHDL for portability reasons,

modeling guidelines are essential.

Before creating ESA-specific guide-

lines, we sought existing modeling

guidelines. Unfortunately, the guidelines

we found were not very useful, con-

taining mainly general and high-level re-

quirements. Their scope is often too vast

to be practical, for example, covering

both modeling issues and requirements

for electronic data sheets. Such guide-

lines would require each user to spend

significant effort in requirements analy-

sis and developing technical solutions.

In addition, the design community

seems to not have widely accepted any

of these guidelines, despite their sever-

al years of existence.

We issued the ESA VHDL Modelling

Guidelines7 in September 1994, after a

review by companies working with the

agency. ESA intends this as a require-

ment document for contracts involving

VHDL modeling. In line with ESA’s phi-

losophy of not mandating specific de-

sign tools, companies may use our

guidelines with most VHDL simulators

or synthesis tools. The only firm re-

quirement is that the tools must support

IEEE.Std_Logic_1164 types. Figure 8

shows a component declaration that

complies with ESA guidelines.

As a complement to the VHDL Mod-

elling Guidelines, we have prepared

VHDL Models for Board-level Simula-

tion.8 While the guidelines largely con-

tain requirements, this document

shows how to implement the guidelines

in a practical way, explaining underly-

ing issues and trade-offs. It focuses on

VHDL models for board level simula-

tion. But many techniques are useful in

other types of developments, such as

ASIC verification.

ESA’s Web site (http://www.estec.

esa.nl/wsmwww) includes more infor-

mation on microelectronics and VHDL

simulation.

Memory

Gate level
(not VHDL)

Memory

Register transfer
level

1:2

1:200

1:1,000

Memory

Board
level

process (Clk, Reset)
begin
 if Reset='1' then
 elsif Clk='0' then
 else
 end if;
end process;

Board level with
memory integrated

process (Clk, Reset)
 variable Mem;
begin
if Reset='1' then
elsif Clk='1' then
 Mem(A, B) :=D;
elsif Clk='0' then
 D <=Mem(A, B);
else
 D <='Z';
end if;
end process;

Figure 7. Example simulation performance acceleration due to increase in abstraction
level for an ASSP.

FALL 1996 77

Distributing models
In 1996, ESA will have received about

20 VHDL models of complex ICs for

spacecraft electronics. A logical step

would be to actively introduce board

level simulation to the companies work-

ing with ESA. Not only will board level

simulation improve design quality and

reduce development schedules, it will

also allow new companies more op-

portunities to design spacecraft elec-

tronics, thus increasing the competition

among equipment suppliers. The major

task is ensuring the availability of simu-

lation models.

The market for simulation models of

space-specific components is too small

to be of economic interest to estab-

lished companies. Therefore, our strat-

egy is to reuse the VHDL models

developed during component design.

Using VHDL greatly reduces the effort

of supporting several platforms and sim-

ulators, since VHDL models require

only minor modifications (if any) for

each new simulator. Commercial mod-

els also follow this trend; as an exam-

ple, Synopsys Logic Modeling offers

VHDL models of lower complexity

components.

Commercial efforts have often used

C models for complex components for

historical reasons and claimed perfor-

mance gains. However, the scheduling

cost for a model’s external signals is the

major limiting factor for simulation per-

formance. Until simulator vendors in-

troduce significant improvements in

signal scheduling, there should be little

difference in simulation performance

between VHDL- and C-based models

running on a VHDL simulator.

Distributing VHDL source code

would require a minimum effort since

the user could be responsible for adapt-

ing code to different simulators.

However, such an approach would be

unacceptable because it does not pro-

tect design information. Specifically,

the company that designed a compo-

nent is understandably unwilling to

make that information available to its

competitors, especially in cases of syn-

thesizable VHDL code. Furthermore,

the availability of VHDL source code

would encourage redevelopment of

similar devices. This in turn would in-

crease costs for ESA as well as signifi-

cantly decrease the interest in foundries

to support devices such as ASSPs.

Source code encryption or scram-

bling could achieve an initial level of

protection. This technique requires re-

moving comments, replacing identi-

fiers with meaningless names, and

removing code structures such as in-

dentation. Although the encrypted

source code is difficult to read directly

(see Figure 9), an automatic process

could increase its readability. Howev-

er, the model is still identical, that is, a

synthesizable model will remain syn-

thesizable. As an experiment, we dis-

tributed encrypted VHDL source code

along with a nondisclosure agreement.

While encryption tools are commer-

cially available,9 we developed a sim-

ple tool in house for this experiment.

The solution we envision for future,

large-scale model distribution is to sup-

ply the models in an analyzed format,

supporting those simulators that suffi-

ciently protect the VHDL code. Further,

it must be possible to remove most of

the remaining source code information.

To increase the protection level, we

could combine the analysis with source

code encryption to rename units and

signals internal to the model. In specif-

component BitMod
generic (

SimCondition: SimConditionType := WorstCase;
InstancePath: String := “BitMod:”;
TimingChecksOn: Boolean := False;
tperiod_Clk: TimeArray := tperiod_Clk; -- TClk
tpw_Clk_posedge: TimeArray := tpw_Clk_posedge; -- TCHi
tpw_Clk_negedge: TimeArray := tpw_Clk_negedge; -- TCLo
tpw_CSN_negedge:TimeArray := tpw_CSN_negedge; -- T1
tsetup_D_CSN: TimeArray := tsetup_D_CSN; -- T2
thold_D_CSN: TimeArray := thold_D_CSN; -- T3
tpd_A_D: TimeArray := tpd_A_D); -- T4

port (
-- System signals (2)
Clk: in Std_Logic; -- Master Clock
Reset_N: in Std_Logic; -- Master Reset
-- Interface to internal registers (12)
A: in Std_Logic_Vector(0 to 1); -- Address bus
CS_N: in Std_Logic; -- Chip select
RW_N: in Std_Logic; -- Read/write
D: inout Std_Logic_Vector(0 to 7); -- Bidir. bus
-- Serial Interface (3)
SClk: in Std_Logic; -- Serial clock
Sdata: in Std_Logic; -- Serial input
Mdata: out Std_Logic); -- Serial output

end component;

Figure 8. A typical component declaration for a model complying to ESA guidelines.

process bEgiN WAIT on llllll1ll ; if llllll1ll = '1' AnD llllll1ll'EvEnt ANd
llllll1ll'laST_VaLUE = '0' THeN l1l1111l1 <= l11lllll1 ; IF l1l1ll1l1 = '0' thEn
l1111llll <= "00111111" ; lll1l1ll1 <= "11111111" ; ElsIf (ll1l111l1 = '1' anD
ll1111l1l = '1') ThEn l111ll1ll <= l111ll1ll + "00000001" ; eNd IF ; iF (l11l1l11l
= '1') THEn ll11llll1 <= l1111llll ; eNd if ; ENd iF ; EnD iF ; eND pRocESS ;

Figure 9. Encrypted VHDL source code.

V H D L

78 IEEE DESIGN & TEST OF COMPUTERS

ic cases, we could first modify the VHDL

models and render them more difficult

to synthesize, for example, by eliminat-

ing hierarchy and merging processes. A

side benefit would be increased simu-

lation performance.

Ongoing work seeks to demonstrate

the feasibility of distributing analyzed

VHDL models. We have created scripts

that automatically analyze a VHDL

model for a specific simulator version

and purge unnecessary source code in-

formation. We then use automatic test

benches to verify the analyzed model

without manual inspection.

ESA WILL CONTINUE to receive VHDL

models of ASICs, ASSPs, and some stan-

dard components that contractors de-

velop under ESA contract. The next

major step will be to establish a viable

distribution scheme for VHDL models

for board level simulation. Major chal-

lenges are

■ intellectual property issues and the

related issue of preserving the mar-

ket for ASSPs and standard com-

ponents, which an easily

synthesizable VHDL model could

destroy

■ the relatively small market, esti-

mated to be less than 30 customers

■ customer expectations for high

levels of maintenance and bug

correction coupled with an un-

willingness to pay more than a

minimum price for the service

■ market size and expectations, and

finding a suitable distribution com-

pany

The final decision on whether to

launch a service for this type of model

availability will depend on many fac-

tors. In parallel with and as a comple-

ment to offering simulation models of

ASSPs and standard components, syn-

thesizable cores or super cells will form

an important part of increasing the ef-

fectiveness of ASIC design.

Acknowledgments
Although not mentioned by name, we

thank those companies we worked with

that performed the basic work referenced

in this article. We also thank all those dis-

cussing simulation performance in their pa-

pers and on the Internet from whom we

have gathered input for our work.

References
1. C. Hein et al., “RASSP VHDL Modeling

Terminology and Taxonomy—Revi-

sion 1.0,” Proc. Second Annual RASSP

Conf., 1995; http://rassp.scra.org.

2. T. Egolf et al., “Experiences with VHDL

Models of COTS RISC Processors in Vir-

tual Prototyping for Complex System

Synthesis,” Proc. VHDL Int’l Users’ Fo-

rum, 1995.

3. O. Levia, “Writing High Performance

VHDL Models,” Proc. EuroVHDL, IEEE

Computer Society Press, Los Alamitos,

Calif., 1991, pp. 119-127.

4. IEEE Std 1164-93, IEEE Standard Multi-

value Logic System for VHDL Model In-

teroperability (Std_logic_1164), IEEE,

Piscataway, N.J., 1993.

5. IEEE Std 1076.4-95, IEEE Standard VI-

TAL ASIC Modelling Specification, IEEE,

1995.

6. P.H. Bardell et al., Built-In Test for VLSI:

Pseudorandom Techniques, John Wiley

& Sons, New York, 1987.

7. P. Sinander, VHDL Modelling Guide-

lines, European Space Agency, the

Netherlands, 1994, ftp://ftp.estec.esa.nl/

pub/vhdl/doc/ModelGuide.ps.

8. S. Habinc, VHDL Models for Board-level

Simulation, European Space Agency, the

Netherlands, 1996, ftp://ftp.estec.esa.nl/

pub/vhdl/doc/BoardLevel.ps.

9. K. O’Brien and S. Maginot, “Non-Re-

versible VHDL Source-Source Encryp-

tion,” Proc. EURO-DAC’94 with

EURO-VHDL’94, IEEE Computer Soci-

ety Press, Los Alamitos, Calif., 1994, pp.

480-486.

Sandi Habinc is a microelectronics engi-

neer in the Microelectronics and Technol-

ogy Section of the European Space

Research and Technology Centre. He holds

an MS in computer science and engineer-

ing from the Chalmers University of Tech-

nology, Gothenburg, Sweden.

Peter Sinander is leading the work in the

Microelectronics and Technology Section

at the European Space Research and Tech-

nology Centre. He holds an MS in electrical

and electronic engineering from the

Chalmers University of Technology.

Direct questions concerning this article

to Sandi Habinc, Microelectronics and

Technology Section (WSM), European

Space Research and Technology Centre,

Postbus 299, NL-2200 AG Noordwijk, The

Netherlands; sandi@ws.estec.esa.nl.

