
An Autonomous CCSDS Packet Generating
ASIC for Analog and Digital Telemetry

D. Reddy, F. O’Brien, M. Flynn, C. McSweeney, J. Damron, G. Maguire, B. Kinsella
Silicon Systems Ltd., 32-34 Harcourt St., Dublin 2, Ireland

tel: +353-1-4025800, fax +353-1-4025811

P. Sinander, C. Smith
Control, Data & Power division (TOS-ES), ESA, PO. Box 299, NL-2200 AG Noordwijk, The Netherlands

tel: +31-71-5656565, fax +31-71-5654295
Abstract

The Packetised Essential Telemetry Retrieval ASIC
(PETRA) is a mixed analog/digital chip for retriev-
ing sensor data on-board spacecraft, designed by
Silicon Systems Ltd. One single PETRA can con-
nect up to 40 digital and/or analog sensors which
are periodically sampled. CCSDS Telemetry pack-
ets containing the data are automatically generated
and can be delivered directly to the transfer frame
generator or to an on-board processor. The pack-
ets are output serially, at a nominal baud rate of
9600bps or 115.2kbps, with the interface being
directly compliant with both the Virtual Channel
Multiplexer (VCA) and RS-232 type asynchronous
serial interfaces.

The PETRA is a 0.8 µm double-metal, double-poly
CMOS mixed signal device with a die size of 26
mm2. The dynamic power dissipation is 80mW with
a static dissipation of 30mW.

This paper introduces the advantages of using the
PETRA in a spacecraft’s Data Handling System
(DHS) compared to a traditional implementation.
An overview of the PETRA functionality is pre-
sented, followed by a description of the device
architecture. An outline of the design methodology
is then followed by a discussion of the PETRA
demonstration system.

1.0 Introduction

The spacecraft Data Handling System [1] plays a cen-
tral role in the interaction between on-board sub-sys-
tems and the ground station. A standard DHS includes
a Central Data Management Unit (CDMU), a data-han-
dling bus, a Telemetry Encoder, a Telecommand

Decoder, a receiver and a transmitter [2]. To acquire
telemetry data, the CDMU communicates with Remote
Terminal Units which can have large numbers of ana-
log and digital sensors (up to a thousand) connected to
them. The CDMU formats the data from each Remote
Terminal Unit into packets which are transmitted to a
ground station as telemetry frames via a radio-fre-
quency link. Such a system requires a large amount of
wiring routed from sensors all over the spacecraft to
the centrally located RTUs. In addition, the system
does not allow for easy access to the spacecraft status
in the event of abnormal conditions (e.g. power disrup-
tion, CDMU not operational, etc.).

In contrast, the PETRA autonomously acquires teleme-
try data, without being dependent on a centralized
DHS. The single-chip PETRA allows data acquisition to
be performed locally, resulting in a reduction of mass,
wiring and power consumption. The PETRA is ideal for
gathering essential telemetry data, ensuring that the
data is provided to the ground station even during
emergency situations. However, the PETRA is not only
intended for emergency operation; it is also suitable for
telemetry data acquisition during normal operation,
with the sensor data being provided via the CDMU.

The PETRA allows for three forms of data communica-
tion (see Figure 1):

• communication with the DHS using the RS-232 type
serial interface. In this case the PETRA acts like a
Packet Remote Terminal, providing the data to the
DHS which reformats it and transmits it to ground,
or alternatively consumes it on-board. (Path A)

• serial communication with other PETRAs using the
VCA compatible interface. An arbitrary number of
devices can then be cascaded in a chain, increasing
the amount of sensor data provided over one serial
link. (Path B)

• direct communication with the Telemetry Encoder
ensuring immediate determination of the spacecraft
status after power on. In this case the PETRA
retrieves “essential telemetry” independently of the
CDMU, and only the Telemetry and Transmitter sub-
systems need to be operational for the spacecraft
status to be determined on ground. The essential
telemetry should for example include power status,
critical system status and whether telecommands
are being received and being acted upon. (Path C)

Figure 1: The PETRA in the Data Handling System

2.0 Functional Overview

The PETRA is essentially a multiplexer for analog and
digital signals which presents the sampled data in the
format of an ESA/CCSDS telemetry packet [3] as
shown in Figure 3. It has 40 discrete inputs which can
be configured as digital (maximum of 40) or analog
(maximum of 32) with selectable voltage ranges of 0-
1V or 0-4V. All enabled inputs are scanned in a fixed
sequence and can be sampled over one of twelve dif-
ferent scan periods (10ms, 20ms, 50ms, 100ms,
200ms, 500ms, 1s, 2s, 5s, 10s, 50s). A scan period is
defined as the periodic rate at which each input is
scanned once. Selection of the scan period and baud
rate is programmed by setting the BAUD_SEL and
SCAN_PER[0:2] inputs pins. At the nominal frequency
of 4 MHz, data is output in serial format, at a baud rate

of either 9600 bps or 115.2 kbps. All digital samples
are sampled together at the beginning of a scan period,
whereas analog sampling is evenly distributed over this
time, as shown in Figure 2.

Figure 2: Data sampling over a scan period

The PETRA has an on-chip 10-bit ADC for conversion
of the analog samples over the 0-4V input range. Data
acquired in a scan period is placed in an ESA/CCSDS
compliant packet when being transmitted. This packet
is transmitted via the Virtual Channel Assembler (VCA)
[4] and RS-232 type output interfaces simultaneously.
The VCA is a member of the TM Encoder chip set.

As a spacecraft generally requires a large number of
sensors, several PETRAs can be connected in a chain
configuration to increase the number of inputs, with
each PETRA providing a separate packet or part of a
packet. Every PETRA in a chain is associated with an
unique Application Identifier which can be one of two
fixed values or programmable. This Identifier is unique
for each separate process or application being moni-
tored in the chain. A PETRA is in merge mode if its
MERGE input is asserted and if it receives a packet
with an application ID which matches its own. It will
then append its own data to complete the packet for
that application/process. This process of merging pack-
ets for the same application reduces the overhead of
separate packet headers.

In addition, to further reduce overheads on the TM
bandwidth, applications being monitored which rarely
change can be monitored in event driven mode. With
this option the scan period is fixed to 10ms and the
high baud rate is selected. However, a packet is only
output when any one of the digital sample inputs have
changed with respect to their previously saved value

and, by default, once every 4096 scan periods (approx-
imately every 40s). This allows high time resolution

Transmitter

TM Encoder

CDMU

PATH C
PETRA

PETRAPETRAPETRAPETRA

PATH B

PATH A

Various Analog and Digital sensors distributed around a spacecraft

PETRAs performing essential telemetry

 N 3 2 1

PETRA

SYNC_OUT

analog sampling

scan period

INPA1 INPA2 INPA3 INPAN

digital sampling

INPAN-1

note: A1 to AN represent N inputs configured as analog

INPA1

when events occur, combined with low packet genera-
tion rate during quiet periods. This is particularly useful
for reducing TM bandwidth previously clogged up with
data which never changes and also if this information is
being used on board, it would reduce the load on the
the CDMU.

The PETRA supports an option for generating a Sam-
ple Packet Error Control Field at the end of every
packet transmitted. This is a 16 bit CRC code calcu-
lated over the whole packet including the header. When
enabled, this error control field occupies the last two
octets of the packet.

Figure 3: A PETRA Packet

Inherent in all packet systems are buffering delays. To
calculate the exact sampling time of the data the
PETRA has an option to produce a “time of origin”
stamp in each packet. The PETRA incorporates its own
basic 32-bit time counter, allowing it to provide time
stamps even when the central spacecraft time sub-
system is not operative. This time count corresponds to
the absolute time from the occurrence of a time strobe
(provided by the transfer frame generator) until the start
of the next scan period for the data in the packet, allow-
ing the absolute time for the start of this scan period to
be determined.

3.0 Architecture

Without plunging into all the details of the architecture
and design, this paper will look at the basic data flow
through the PETRA (see Figure 4) under the following
headings:

• Internal Packet Generation

• External Packet Parsing

• Output Interfaces

• Control and Arbitration.

3.1 Internal Packet Generation

This section of the PETRA is responsible for sample
gathering (analog and digital) and packet generation.
The sample enable generator controls the exact times
at which digital and analog sampling is carried out.
Sample data is acquired in one scan period and is
transmitted at the beginning of the next. A PETRA’s
scan period can be viewed externally on SYNC_OUT,
which is an indication that the sampling process is
ongoing. During a scan period, all the digital inputs are
passed through anti-glitch filters before sampling the
data into the Sample Buffer. Analog samples are
selected using a 32:1 analog multiplexer before being
converted in an A/D into digital form and then saved in
the sample buffer. The A/D converter is a 10 bit device
that can potentially handle up to 12 bit operation. The
Internal Packet Generator combines the Analog and
Digital samples (i.e. the Packet Data Field) and stores
them in the Sample & Data buffer in correct order ready
for transmission.

Before transmission the PETRA generates a header
(six octets long), which is carried out in the Sample
Packet Header sub-block. The header contains infor-
mation about the packet, i.e. the PETRA’s Application
ID, how many scan periods have occurred since power
on, and the length of the packet. Also within the domain
of the Internal Packet Generation is the generation of
the time stamp associated with the current packet. This
is carried out by a 32-bit time counter which increments
by one for every system clock cycle after the assertion
of the TIME input pin until the first sample of the next
scan period has been taken. The data octets from the
Time Count sub-block, Sample Packet Header Sub-
block, and Sample & Data Buffer sub-block are then
passed into a multiplexer. The octets are then chosen
in correct order and output to the CRC encoder block
before being output on the VCA and RS-232 type inter-
faces.

3.2 Cascading and Packet Merging

When two or more PETRAs are connected in a chain
configuration they can communicate with each other
via a Cascade Interface which is part of the Cascade
Input Interface and Packet Parser block. Here external
packets are input serially and are assembled into
octets before the being parsed. The serial inputs SIN
and SCLK_IN are registered twice for metastability rea-
sons. The parser reads the header of the external
packet and decides what must be done with it. In par-
ticular if the PETRA has MERGE asserted, it will com-
pare the Application Identifier of the incoming packet

Packet Header Packet Data Field

(48 bits)
sample data time of origin

stamp.
(32 bits)
optional.

CRC error bits

(16 bits)
optional

First bit transmitted = MSB.

PETRA PACKET

(variable length)

Figure 4: PETRA Functional Block Diagram

ADC &
Analog
Mux

Cascade Input
Interface & Packet
Parser Block

CRC
Encoder
Block

VCA &
RS232
Interface

Digital
Samples

Analog
Samples

External
Cascade
Packets

PETRA Control Unit controls

Digital/Analog
samples assembled
into Packet Data Field

Mux at input to CRC Encoder
Block selects one of 2 possible
data octet sources

Data output serially
on both VCA and
RS232 Interfaces

Sample
Enable
Generator

Block to control timing of
Analog/Digital Sampling

as arbitration of Cascading Bus
operation of the PETRA as well

Glitch Filter &

Sample &
Data
Buffer

Sample
Packet
Header

Special Event

Internal

PETRA
Control
Unit.

Packet
Generator

Time
Count
with its own Application ID. If the Application IDs match
it will merge the data in the Sample & Data buffer with
the external packet and adjust the length field of the
external packet before transmission.

3.3 Output Interfaces

Once the internal packet has been generated and the
External Packet has been parsed (if it exists), the seri-
alised octets are passed to the CRC block. If the CRC
input is asserted, this block will generate a 16-bit CRC
code for the entire packet (Header Field, Data Field
and Time count field if included). The final serialised
octets are then passed to the VCA & RS-232 type inter-
faces from which they are transmitted through the VCA
interface and the RS-232 type interface using one of
two selectable baud rates. Data octets received at a
lower baud rate than the PETRA’s are output at the
PETRA’s own baud rate. For small percentage differ-
ences between the respective baud rates, the length of
the ‘stop’ bit is adjusted to compensate.

3.4 Control and Arbitration

The PETRA Control Unit is responsible for co-ordinat-
ing the functions of the various blocks, arbitration on

the cascading bus, error control on the Cascade Inter-
face, and co-ordinating the internal and external data
flow. Its main function is to ensure that data is transmit-
ted only at the correct times and according to the rules
of the arbitration scheme that the PETRA obeys. The
arbitration scheme, built into each PETRA, determines
if it is allowed to transmit its own (PETRA) packet, if it
should give priority to a packet (Cascade Packet) arriv-
ing from an upstream source or if a downstream source
(higher priority) should transmit first (see Figure 5). An
upstream source is defined as a PETRA or other VCA
compatible device which is further away from the TM
Encoder than the current PETRA. The data flow is from
the upstream device towards the TM Encoder. Devices
closer to the TM Encoder are known as downstream
devices.

This block also controls the switchover from internal to
external transmission (and vice versa) in cascade and
merge modes and controls the flow of telemetry data
within the PETRA through generation of internal enable
signals. Another important function of the PETRA Con-
trol Unit is to protect the PETRA against any errors
which might occur at the Cascade Interface, and also

highlighting the arrival at the Cascade Interface of the
first and last octets of an external data packet.

Figure 5: The PETRA data flow

4.0 Design Methodology

The PETRA was designed by SSL based on an initial
specification [5] produced by the Microelectronics
section at ESTEC (TOS-ESM), exploring the
possibilities offered by mixed analog/digital technology.
It is part of an ongoing ESA program to create a
commercially available family of standard ASICs to
reduce costs and development time while improving
the performance of the data handling systems using
the ESA/CCSDS standards. This initial specification
was subsequently refined into the PETRA Functional
Specification by SSL.

The digital part of the PETRA was implemented in
VHDL RTL code and was kept as synchronous as pos-
sible. This code was simulated with the Cadence Leap-
frog VHDL simulator. The chip was then laid out with
Cell Ensemble. No floating nodes exist in the PETRA
as the digital design was implemented with static
standard cells. The entire analog front-end was imple-
mented in Spectre and eldo. Verification of the analog
and digital interface was carried out by running mixed
mode simulations in SpectreVerilog. The full PETRA
design was verified for design rule checks (DRC) and
Layout versus schematic (LVS) match using the
Cadence DIVA tool.

The design allows the possibility of scan insertion for
production testing. The netlist was taken through scan
insertion with Sunrise, but since the area increased by
15% scan testing was abandoned. A gate level verilog
netlist of the design was generated and verifault was
used to verify a 90% fault coverage without scan, which
was considered acceptable for a demonstrator not
intended for flight. At this point the digital design was
also mapped to an ALTERA Flex 10K FPGA using
Synopsys and functionality was tested and verified
using the demonstration system.

Figure 6: Photo of the PETRA die

After the PETRA Functional Specification had been
finalized, the design from RTL implementation to final
layout took eight months. The digital complexity is 13K
gates. The PETRA is implemented in the AMS 0.8 µm
double-metal, double-poly CMOS technology provided
through the Europractice multi-project wafer service,

with a die area of 26mm2 (see Figure 6).

5.0 Demonstration System
SSL has also developed a PC-based demonstration
system for the PETRA (see Figure 7). The overall
requirement was for a user-friendly, flexible system
capable of demonstrating as much of the PETRA
functionality as possible in an environment emulating a
real application. There are three basic elements to
such a system:

• Physical hosting capability for the PETRA chip,

• Ability to stimulate analog and digital inputs,

• Software to acquire, analyse, store and display the
packet data.

Our solution involved the design of a multi-layer PCB to
host one PETRA device. DIP switches allow the
PETRA to be configured into different operational
modes. RS422 transceivers are provided to interface
with an upstream and a downstream PCB (and their
associated PETRAs). This allows the user to exercise
an individual PETRA or a chain of PETRAs. There is
also an RS-232 transceiver to send the data packets to
a PC or other computer. In the demonstration system,

SVALID_INSVALID_OUT

upstream direction

VCAR_IN VCAR

Is downstream PETRA
transmitting?

Is upstream PETRA
transmitting?

TM

Encoder
PETRA

downstream direction

Figure 7: Demonstration of a chain of PETRAs

PETRA

RS232

Inputs

(GPIB)

Serial
Port

PC

LabVIEWControl
LinesPETRA

Inputs

PETRA

Inputs

Upstream

Downstream

RS422RS422
the PC replaces the TM Encoder, downlink, ground
station and operator display.

The inputs to each PETRA may be driven directly
through connectors on the board. A range of plug-in
daughter-boards with switches, potentiometers and
other sensors allows the user to stimulate the digital
and analog data inputs.

LabVIEW® (from National Instruments) was used to
create a Graphical User Interface for the demonstration
system. Essentially, the software reads the packet data
received via the RS-232 port and optionally saves it to
disk. Once the user has entered the configuration of
each PETRA, the software can automatically interpret
the packets into their constituent header and data
fields. The individual samples are then converted into
engineering units, checked for alarm conditions, and
displayed in a variety of formats.

6.0 Conclusions

A mixed signal prototype for data acquisition and
packet generation has been implemented to meet
CCSDS and ESA Packet Telemetry Standards. The
chip requires no additional software or processor to
operate and can reduce the load on on-board proces-
sors in event driven mode. The ability to communicate
directly with the TM encoder allows the PETRA to oper-
ate immediately after power restoration and it is ideal
for acquiring vital telemetry data without relying on a
centralized Data Handling System. The PETRA was
designed for full compatibility with the current genera-
tion of DHS systems while improving telemetry and
sensory capabilities for future demands.

References
1. Chris Plummer, “Data Handling System Standard,

ESA PSS-04-201”, Draft 1.0f, European Space
Agency, February 1996

2. Peter Sinander, “Components for Building
Telecommand and Telemetry On-board Systems”,
WDN/PS/1251, European Space Agency, 1994

3. Standards Approval Board (STAB) for Space Data
Communications, “Packet Telemetry Standard”,
ESA PSS-04-106 Issue1, European Space
Agency, January 1988

4. “VCA HAF_12399 Preliminary Data Sheet”, ABB
Hafo (now MITEL Semiconductor), January 1994

5. Peter Sinander, “PETRA, Packetised Essential
Telemetry Retrieval ASIC, Initial Specification”,
WSM/PS/140, Issue 1.1, European Space Agency,
29 March 1996

6. “PETRA Preliminary Data Sheet”, rev 1.1, January
1998, Silicon Systems Limited

	1.0 Introduction
	2.0 Functional Overview
	3.0 Architecture
	3.1 Internal Packet Generation
	3.2 Cascading and Packet Merging
	3.3 Output Interfaces
	3.4 Control and Arbitration

	4.0 Design Methodology
	5.0 Demonstration System
	6.0 Conclusions

