
Understanding Verilog BlockingUnderstanding Verilog Blocking
and Nonand Non--blocking Assignmentsblocking Assignments

International CadenceInternational Cadence
User Group ConferenceUser Group Conference

September 11, 1996September 11, 1996

presented bypresented by

Stuart SutherlandStuart Sutherland
Sutherland HDL ConsultingSutherland HDL Consulting

About the PresenterAbout the Presenter

Stuart Sutherland has over 8 years of experience using Verilog wStuart Sutherland has over 8 years of experience using Verilog with a variety of software tools. He ith a variety of software tools. He
holds a BS degree in Computer Science, with an emphasis on Electholds a BS degree in Computer Science, with an emphasis on Electronic Engineering, and has ronic Engineering, and has
worked as a design engineer in the defense industry, and as an Aworked as a design engineer in the defense industry, and as an Applications Engineer for Gateway pplications Engineer for Gateway
Design Automation (the originator of Verilog) and Cadence DesignDesign Automation (the originator of Verilog) and Cadence Design Systems. Mr. Sutherland has Systems. Mr. Sutherland has
been providing Verilog HDL consulting services since 1991. As abeen providing Verilog HDL consulting services since 1991. As a consultant, he has been actively consultant, he has been actively
involved in using the Veriloginvolved in using the Verilog langiagelangiage with a many different of software tools for the design ofwith a many different of software tools for the design of
ASICsASICs and systems. He is a member of the IEEE 1364 standards committand systems. He is a member of the IEEE 1364 standards committee and has been involved ee and has been involved
in the specification and testing of Verilog simulation products in the specification and testing of Verilog simulation products from several EDA vendors, including from several EDA vendors, including
the Intergraphthe Intergraph--VeriBest VeriBest VeriBestVeriBest simulator, the Mentorsimulator, the Mentor QuickHDLQuickHDL simulator, and the Frontlinesimulator, and the Frontline
CycleDriveCycleDrive cycle based simulator. In addition to Verilog designcycle based simulator. In addition to Verilog design consutltingconsutlting, Mr. Sutherland , Mr. Sutherland
provides expert onprovides expert on--site Verilog training on the Verilog HDL language andsite Verilog training on the Verilog HDL language and ProgramingPrograming Language Language
Interface. Mr. Sutherland is the author and publisher of the poInterface. Mr. Sutherland is the author and publisher of the popular pular “Verilog IEEE 1364 Quick “Verilog IEEE 1364 Quick
Reference Guide”Reference Guide” and the and the “Verilog IEEE 1364 PLI Quick Reference Guide”“Verilog IEEE 1364 PLI Quick Reference Guide”..

PleasePlease conactconact Mr. Sutherland with any questions about this material!Mr. Sutherland with any questions about this material!

phone: (503) 692phone: (503) 692--08980898
fax: (503) 692fax: (503) 692--15121512

ee--mail:mail: stuartstuart@@sutherlandsutherland.com.com

Sutherland HDL ConsultingSutherland HDL Consulting
Verilog Consulting and Training ServicesVerilog Consulting and Training Services

22805 SW 9222805 SW 92ndnd PlacePlace
Tualatin, OR 97062 USATualatin, OR 97062 USA

The material in this presentation is copyrighted by Sutherland HThe material in this presentation is copyrighted by Sutherland HDL Consulting, DL Consulting,
Tualatin, Oregon. The presentation is printed with permission aTualatin, Oregon. The presentation is printed with permission as part of the s part of the
proceedings of the 1996 International Cadence User Group Confereproceedings of the 1996 International Cadence User Group Conference. All rights nce. All rights
are reserved. No material from this presentation may be duplicaare reserved. No material from this presentation may be duplicated or transmitted by ted or transmitted by
any means or in any form without the express written permission any means or in any form without the express written permission of Sutherland HDL of Sutherland HDL
Consulting.Consulting.

copyright noticecopyright notice

Sutherland HDL ConsultingSutherland HDL Consulting
22805 SW 9222805 SW 92ndnd

PlacePlace
Tualatin, OR 97062 USATualatin, OR 97062 USA

phone: (503) 692phone: (503) 692--08980898
fax: (503) 692fax: (503) 692--15121512

ee--mail: info@mail: info@sutherlandsutherland.com.com

©©19961996

44

SutherlandSutherlandSutherland
HHH DDD LLL

ObjectivesObjectivesObjectives

➤➤ The primary objective is to understand:The primary objective is to understand:

What type of hardware is representedWhat type of hardware is represented
by blocking and nonby blocking and non--blocking blocking

assignments?assignments?

➤➤ The material presented is a subset of an advanced Verilog The material presented is a subset of an advanced Verilog
HDL training courseHDL training course

55

SutherlandSutherlandSutherland
HHH DDD LLL

Procedural AssignmentsProcedural AssignmentsProcedural Assignments

➤➤ Procedural assignment evaluation can be modeled as:Procedural assignment evaluation can be modeled as:
➤➤ BlockingBlocking
➤➤ NonNon--blockingblocking

➤➤ Procedural assignment execution can be modeled as:Procedural assignment execution can be modeled as:
➤➤ SequentialSequential
➤➤ ConcurrentConcurrent

➤➤ Procedural assignment timing controls can be modeled as:Procedural assignment timing controls can be modeled as:
➤➤ Delayed evaluationsDelayed evaluations
➤➤ Delayed assignmentsDelayed assignments

66

SutherlandSutherlandSutherland
HHH DDD LLL

Blocking
Procedural Assignments
Blocking Blocking
Procedural AssignmentsProcedural Assignments

➤➤ The The == token represents a token represents a blockingblocking procedural assignmentprocedural assignment
➤➤ Evaluated and assigned in a single stepEvaluated and assigned in a single step
➤➤ Execution flow within the procedure is blocked until the Execution flow within the procedure is blocked until the

assignment is completedassignment is completed
➤➤ Evaluations of concurrent statements in the same time step Evaluations of concurrent statements in the same time step

are blocked until the assignment is completedare blocked until the assignment is completed
These examples will These examples will notnot work work Why not?Why not?

//swap bytes in word
always @(posedge clk)

begin
word[15:8] = word[7:0];
word[7:0] = word[15:8];

end

//swap bytes in word
always @(posedge clk)

begin
word[15:8] = word[7:0];
word[7:0] = word[15:8];

end

//swap bytes in word
always @(posedge clk)

fork
word[15:8] = word[7:0];
word[7:0] = word[15:8];

join

//swap bytes in word
always @(posedge clk)

fork
word[15:8] = word[7:0];
word[7:0] = word[15:8];

join

77

SutherlandSutherlandSutherland
HHH DDD LLL

Non-Blocking
Procedural Assignments
NonNon--Blocking Blocking
Procedural AssignmentsProcedural Assignments

➤➤ The The <=<= token represents a token represents a nonnon--blockingblocking assignmentassignment
➤➤ Evaluated and assigned in two steps:Evaluated and assigned in two steps:
①① The rightThe right--hand side is evaluated immediatelyhand side is evaluated immediately
②② The assignment to the leftThe assignment to the left--hand side is postponed until hand side is postponed until

other evaluations in the current time step are completedother evaluations in the current time step are completed
➤➤ Execution flow within the procedure continues until a Execution flow within the procedure continues until a

timing control is encountered (flow is not blocked) timing control is encountered (flow is not blocked)
These examples will work These examples will work Why?Why?

//swap bytes in word
always @(posedge clk)
begin
word[15:8] <= word[7:0];
word[7:0] <= word[15:8];

end

//swap bytes in word
always @(posedge clk)
begin
word[15:8] <= word[7:0];
word[7:0] <= word[15:8];

end

//swap bytes in word
always @(posedge clk)
fork
word[15:8] <= word[7:0];
word[7:0] <= word[15:8];

join

//swap bytes in word
always @(posedge clk)
fork
word[15:8] <= word[7:0];
word[7:0] <= word[15:8];

join

88

SutherlandSutherlandSutherland
HHH DDD LLL

Representing
Simulation Time as Queues
Representing Representing
Simulation Time as QueuesSimulation Time as Queues

➤➤ Each Verilog simulation time step is divided into 4 queuesEach Verilog simulation time step is divided into 4 queues

Note: this is an abstract view, not how simulation algorithms arNote: this is an abstract view, not how simulation algorithms are implementede implemented

Time 0:
➤ Q1 — (in any order) :

➤ Evaluate RHS of all non-blocking assignments
➤ Evaluate RHS and change LHS of all blocking assignments
➤ Evaluate RHS and change LHS of all continuous assignments
➤ Evaluate inputs and change outputs of all primitives
➤ Evaluate and print output from $display and $write

➤ Q2 — (in any order) :
➤ Change LHS of all non-blocking assignments

➤ Q3 — (in any order) :
➤ Evaluate and print output from $monitor and $strobe
➤ Call PLI with reason_synchronize

➤ Q4 :
➤ Call PLI with reason_rosynchronize

Time 1:
...

Time 0:
➤ Q1 — (in any order) :

➤ Evaluate RHS of all non-blocking assignments
➤ Evaluate RHS and change LHS of all blocking assignments
➤ Evaluate RHS and change LHS of all continuous assignments
➤ Evaluate inputs and change outputs of all primitives
➤ Evaluate and print output from $display and $write

➤ Q2 — (in any order) :
➤ Change LHS of all non-blocking assignments

➤ Q3 — (in any order) :
➤ Evaluate and print output from $monitor and $strobe
➤ Call PLI with reason_synchronize

➤ Q4 :
➤ Call PLI with reason_rosynchronize

Time 1:
...

99

SutherlandSutherlandSutherland
HHH DDD LLL

Sequential
Procedural Assignments
SequentialSequential
Procedural AssignmentsProcedural Assignments

➤➤ The order of evaluation is The order of evaluation is determinatedeterminate
➤➤ A A sequential blocking assignmentsequential blocking assignment evaluates and assigns evaluates and assigns

before continuing on in the procedurebefore continuing on in the procedure
always @(always @(posedge clkposedge clk))
beginbegin

A A == 1;1;
#5 B #5 B == A + 1;A + 1;

endend

evaluate and assign A immediatelyevaluate and assign A immediately
delay 5 time units, then evaluate and assigndelay 5 time units, then evaluate and assign

➤➤ A A sequential nonsequential non--blocking assignmentblocking assignment evaluates, then evaluates, then
continues on to the next timing control before assigningcontinues on to the next timing control before assigning

always @(always @(posedge clkposedge clk))
beginbegin

A A <=<= 1;1;
#5 B #5 B <=<= A + 1;A + 1;

endend

evaluate A immediately; assign at end of time stepevaluate A immediately; assign at end of time step
delay 5 time units, then evaluate; then assign at delay 5 time units, then evaluate; then assign at
end of time step (clock + 5)end of time step (clock + 5)

1010

SutherlandSutherlandSutherland
HHH DDD LLL

Concurrent
Procedural Assignments
ConcurrentConcurrent
Procedural AssignmentsProcedural Assignments

The order of concurrent evaluation is The order of concurrent evaluation is indeterminateindeterminate
➤➤ Concurrent Concurrent blocking assignmentsblocking assignments have have unpredictable resultsunpredictable results

always @(always @(posedge clkposedge clk))
#5 A #5 A == A + 1;A + 1;

always @(always @(posedge clkposedge clk))
#5 B #5 B == A + 1;A + 1;

Unpredictable Result:Unpredictable Result:
(new value of(new value of BB could be evaluated beforecould be evaluated before
or afteror after AA changes)changes)

➤➤ Concurrent Concurrent nonnon--blocking assignmentsblocking assignments have have predictable resultspredictable results

always @(always @(posedge clkposedge clk))
#5 A #5 A <=<= A + 1;A + 1;

always @(always @(posedge clkposedge clk))
#5 B #5 B <=<= A + 1;A + 1;

Predictable Result:Predictable Result:
(new value of(new value of BB will always be evaluated will always be evaluated
beforebefore AA changes)changes)

1111

SutherlandSutherlandSutherland
HHH DDD LLL

Delayed Evaluation
Procedural Assignments
Delayed Evaluation Delayed Evaluation
Procedural AssignmentsProcedural Assignments

➤➤ A timing control before an assignment statement will postpone A timing control before an assignment statement will postpone
when the next assignment is evaluatedwhen the next assignment is evaluated
➤➤ Evaluation is delayed for the amount of time specifiedEvaluation is delayed for the amount of time specified

beginbegin
#5#5 A A == 1;1;
#5 #5 A A == A + 1;A + 1;

B B == A + 1;A + 1;
endend

delay for 5, then evaluate and assigndelay for 5, then evaluate and assign
delay 5 more, then evaluate and assigndelay 5 more, then evaluate and assign
no delay; evaluate and assign no delay; evaluate and assign

What values do A and B contain after 10 time units?What values do A and B contain after 10 time units?

1212

SutherlandSutherlandSutherland
HHH DDD LLL

Delayed Assignment
Procedural Assignments
Delayed AssignmentDelayed Assignment
Procedural AssignmentsProcedural Assignments

➤➤ An An intraintra--assignment delayassignment delay places the timing control places the timing control afterafter the the
assignment tokenassignment token
➤➤ The rightThe right--hand side is evaluated before the delay hand side is evaluated before the delay
➤➤ The leftThe left--hand side is assigned after the delayhand side is assigned after the delay

always @(A)always @(A)
BB == #5#5 A;A;

AA is evaluated at the time it changes, but is evaluated at the time it changes, but
is not assigned to is not assigned to BB until after 5 time unitsuntil after 5 time units

always @(always @(negedge clknegedge clk))
Q Q <=<= @(@(posedge clkposedge clk)) D;D;

DD is evaluated at the negative edge of is evaluated at the negative edge of CLKCLK,,
QQ is changed on the positive edge of is changed on the positive edge of CLKCLK

always @(instructor_input)
if (morning)
understand = instructor_input;

else if (afternoon)
understand = #5 instructor_input;

else if (lunch_time)
understand = wait (!lunch_time) instructor_input;

always @(instructor_input)
if (morning)
understand = instructor_input;

else if (afternoon)
understand = #5 instructor_input;

else if (lunch_time)
understand = wait (!lunch_time) instructor_input;

1313

SutherlandSutherlandSutherland
HHH DDD LLL

Intra-Assignment Delays
With Repeat Loops
IntraIntra--Assignment Delays Assignment Delays
With Repeat LoopsWith Repeat Loops

➤➤ An edgeAn edge--sensitive intrasensitive intra--assignment timing control permits a assignment timing control permits a
special use of the repeat loopspecial use of the repeat loop
➤➤ The edge sensitive time control may be repeated several The edge sensitive time control may be repeated several

times before the delay is completedtimes before the delay is completed
➤➤ Either the blocking or the nonEither the blocking or the non--blocking assignment may be blocking assignment may be

usedused

always @(IN)
OUT <= repeat (8) @(posedge clk) IN;

always @(IN)
OUT <= repeat (8) @(posedge clk) IN;

The value of IN is evaluated when it changes, but is
not assigned to OUT until after 8 clock cycles

1414

SutherlandSutherlandSutherland
HHH DDD LLL

Choosing the
Correct Procedural Assignment
Choosing the Choosing the
Correct Procedural AssignmentCorrect Procedural Assignment

➤➤ Which procedural assignment should be used to model a Which procedural assignment should be used to model a
combinatorial logic buffer?combinatorial logic buffer?

➤➤ Which procedural assignment should be used to model a Which procedural assignment should be used to model a
sequential logic flipsequential logic flip--flop?flop?

➤➤ The following pages will answer these questionsThe following pages will answer these questions

always @(in)
#5 out = in;

always @(in)
#5 out <= in;

always @(in)
out = #5 in;

always @(in)
out <= #5 in;

always @(posedge clk)
#5 q = d;

always @(posedge clk)
#5 q <= d;

always @(posedge clk)
q = #5 d;

always @(posedge clk)
q <= #5 d;

1515

SutherlandSutherlandSutherland
HHH DDD LLL

Transition
Propagation Methods
Transition Transition
Propagation MethodsPropagation Methods

➤➤ Hardware has two primary propagation delay methods:Hardware has two primary propagation delay methods:
➤➤ Inertial delayInertial delay models devices with finite switching speeds; models devices with finite switching speeds;

input glitches do not propagate to the outputinput glitches do not propagate to the output

➤➤ Transport delayTransport delay models devices with near infinite models devices with near infinite
switching speeds; input glitches propagate to the output switching speeds; input glitches propagate to the output

20 6050403010 20 6050403010

Buffer with a 10 nanosecond propagation delay

20 6050403010 20 6050403010

Buffer with a 10 nanosecond propagation delay

1616

SutherlandSutherlandSutherland
HHH DDD LLL

Combinational Logic
Procedural Assignments
Combinational Logic Combinational Logic
Procedural AssignmentsProcedural Assignments

➤➤ How will these procedural assignments behave?How will these procedural assignments behave?
20 6050403010

inin
3333 3636 4545

always @(in)always @(in)
o1 o1 == in;in;

Blocking,Blocking,
No delayNo delay

always @(in)always @(in)
o2 o2 <=<= in;in;

NonNon--blocking,blocking,
No delayNo delay

always @(in)always @(in)
#5#5 o3 o3 == in;in;

Blocking,Blocking,
Delayed evaluationDelayed evaluation

o1o1

o2o2

o3o3

o4o4

o5o5

o6o6

always @(in)always @(in)
#5#5 o4 o4 <=<= in;in;

NonNon--blocking,blocking,
Delayed evaluationDelayed evaluation

always @(in)always @(in)
o5 o5 = #5= #5 in;in;

Blocking,Blocking,
Delayed assignmentDelayed assignment

always @(in)always @(in)
o6 o6 <= #5<= #5 in;in;

NonNon--blocking,blocking,
Delayed assignmentDelayed assignment

zero delayzero delay

inertialinertial

transporttransport

1717

SutherlandSutherlandSutherland
HHH DDD LLL

Sequential Logic
Procedural Assignments
Sequential Logic Sequential Logic
Procedural AssignmentsProcedural Assignments

➤➤ How will these procedural assignments behave?How will these procedural assignments behave?
➤➤ Sequential assignmentsSequential assignments
➤➤ No delaysNo delays

20 6050403010
clk

always @(always @(posedge clkposedge clk))
beginbegin

y1 y1 == in;in;
y2 y2 == y1;y1;

endend

always @(always @(posedge clkposedge clk))
beginbegin

y1 y1 <=<= in;in;
y2 y2 <=<= y1;y1;

endend

in
35 53

y2

y1

y1

y2

y2y1

parallel flipparallel flip--flopsflops

y1

y2

shiftshift--register with zero delaysregister with zero delays

1818

SutherlandSutherlandSutherland
HHH DDD LLL

Sequential Logic
Procedural Assignments
Sequential Logic Sequential Logic
Procedural AssignmentsProcedural Assignments

➤➤ How will these procedural assignments behave?How will these procedural assignments behave?
➤➤ Sequential assignmentsSequential assignments
➤➤ Delayed evaluationDelayed evaluation

20 6050403010
clk

always @(always @(posedge clkposedge clk))
beginbegin
#5#5 y1 y1 == in;in;
#5#5 y2 y2 == y1;y1;

endend

always @(always @(posedge clkposedge clk))
beginbegin
#5#5 y1 y1 <=<= in;in;
#5#5 y2 y2 <=<= y1;y1;

endend

in
35 53

y2

y1

y1

y2

? ? ?

? ? ?

y1

y2

#5#5

shift register with delayed clocksshift register with delayed clocks

? ? ?

? ? ?

y1

y2

#5#5

shift register with delayed clocksshift register with delayed clocks

1919

SutherlandSutherlandSutherland
HHH DDD LLL

Sequential Logic
Procedural Assignments
Sequential Logic Sequential Logic
Procedural AssignmentsProcedural Assignments

➤➤ How will these procedural assignments behave?How will these procedural assignments behave?
➤➤ Sequential assignmentsSequential assignments
➤➤ Delayed assignmentDelayed assignment

20 6050403010
clk

always @(always @(posedge clkposedge clk))
beginbegin

y1 y1 = #5= #5 in;in;
y2 y2 = #5= #5 y1;y1;

endend

always @(always @(posedge clkposedge clk))
beginbegin

y1 y1 <= #5<= #5 in;in;
y2 y2 <= #5<= #5 y1;y1;

endend

y1

y2

y1

y2

in
35 53

shift register delayed clock on second stageshift register delayed clock on second stage

y1

y2

#5

#5 #5

y1

y2
#5 #5

shift register with delaysshift register with delays

2020

SutherlandSutherlandSutherland
HHH DDD LLL

Sequential Logic
Procedural Assignments
Sequential Logic Sequential Logic
Procedural AssignmentsProcedural Assignments

➤➤ How will these procedural assignments behave?How will these procedural assignments behave?
➤➤ Concurrent assignmentsConcurrent assignments
➤➤ No delaysNo delays

y1

y2

20 6050403010
clk

always @(always @(posedge clkposedge clk))
y1 y1 == in;in;

always @(always @(posedge clkposedge clk))
y2 y2 == y1;y1;

y1

y2

always @(always @(posedge clkposedge clk))
y1 y1 <=<= in;in;

always @(always @(posedge clkposedge clk))
y2 y2 <=<= y1;y1;

in
35 53

? ? ? ? ? ? ? ?

y1

y2
?

shift register with race conditionshift register with race condition

y1

y2

shiftshift--register with zero delaysregister with zero delays

2121

SutherlandSutherlandSutherland
HHH DDD LLL

y2

y1

Sequential Logic
Procedural Assignments
Sequential Logic Sequential Logic
Procedural AssignmentsProcedural Assignments

➤➤ How will these procedural assignments behave?How will these procedural assignments behave?
➤➤ Concurrent assignmentsConcurrent assignments
➤➤ Delayed evaluationDelayed evaluation

20 6050403010
clk

always @(always @(posedge clkposedge clk))
#5#5 y1 y1 == in;in;

always @(always @(posedge clkposedge clk))
#5#5 y2 y2 == y1;y1;

always @(always @(posedge clkposedge clk))
#5#5 y1 y1 <=<= in;in;

always @(always @(posedge clkposedge clk))
#5#5 y2 y2 <=<= y1;y1;

in
35 53

y1

y2 ? ? ?

? ? ?

? ? ? ?
shift register with race conditionshift register with race condition

y1

y2
?

#5
#5

? ? ?

?

y1

y2

#5
shift register with race conditionshift register with race condition

2222

SutherlandSutherlandSutherland
HHH DDD LLL

Sequential Logic
Procedural Assignments
Sequential Logic Sequential Logic
Procedural AssignmentsProcedural Assignments

➤➤ How will these procedural assignments behave?How will these procedural assignments behave?
➤➤ Concurrent assignmentsConcurrent assignments
➤➤ Delayed assignmentDelayed assignment

20 6050403010
clk

always @(always @(posedge clkposedge clk))
y1 y1 = #5= #5 in;in;

always @(always @(posedge clkposedge clk))
y2 y2 = #5 = #5 y1;y1;

always @(always @(posedge clkposedge clk))
y1y1 <= #5<= #5 in;in;

always @(always @(posedge clkposedge clk))
y2 y2 <= #5<= #5 y1;y1;

in
35 53

y1

y2

y1

y2

y1

y2
#5 #5

shift register, delay must be < clock periodshift register, delay must be < clock period

y1

y2
#5 #5

shift register with delaysshift register with delays

2323

SutherlandSutherlandSutherland
HHH DDD LLL

Rules of Thumb for
Procedural Assignments
Rules of Thumb forRules of Thumb for
Procedural AssignmentsProcedural Assignments

➤➤ Combinational Logic:Combinational Logic:
➤➤ No delays:No delays: Use blocking assignments (Use blocking assignments (a = b;a = b;))
➤➤ Inertial delays:Inertial delays: Use delayed evaluation blocking Use delayed evaluation blocking

assignments (assignments (#5 a = b;#5 a = b;))

➤➤ Transport delays:Transport delays: Use delayed assignment nonUse delayed assignment non--blocking blocking
assignments (assignments (a <= #5 b;a <= #5 b;))

➤➤ Sequential Logic:Sequential Logic:
➤➤ No delays:No delays: Use nonUse non--blocking assignments (blocking assignments (q <= d;q <= d;))
➤➤ With delays:With delays: Use delayed assignment nonUse delayed assignment non--blocking blocking

assignments (assignments (q <= #5 d;q <= #5 d;))

2424

SutherlandSutherlandSutherland
HHH DDD LLL

An Exception to Non-blocking
Assignments in Sequential Logic
An Exception to NonAn Exception to Non--blocking blocking
Assignments in Sequential LogicAssignments in Sequential Logic

➤➤ Do Do not not use a nonuse a non--blocking assignment if another statement in blocking assignment if another statement in
the procedure requires the new value in the same time stepthe procedure requires the new value in the same time step

begin
#5 A <= 1;
#5 A <= A + 1;

B <= A + 1;
end

What values do A and B contain
after 10 time units?
What values do A and B contain
after 10 time units?

always @(posedge clk)
begin

case (state)
`STOP: next_state <= `GO;
`GO: next_state <= `STOP;
endcase
state <= next_state;

end

Assume state and next_state
are `STOP at the first clock,
what is state:

- At the 2nd clock?
- At the 3rd clock?
- At the 4th clock?
- At the 5th clock?

Assume state and next_state
are `STOP at the first clock,
what is state:

- At the 2nd clock?
- At the 3rd clock?
- At the 4th clock?
- At the 5th clock?

A is 2A is 2 B is 2B is 2

`STOP`STOP
`GO`GO
`GO`GO
`STOP`STOP

2525

SutherlandSutherlandSutherland
HHH DDD LLL

Exercise 3:
Procedural Assignments
Exercise 3: Exercise 3:
Procedural AssignmentsProcedural Assignments

➤➤ Write a procedure for an adder (combinational logic) that Write a procedure for an adder (combinational logic) that
assigns C the sum of A plus B with a 7ns propagation delay.assigns C the sum of A plus B with a 7ns propagation delay.

➤➤ Write the procedure(s) for a 4Write the procedure(s) for a 4--bit wide shift register (positive bit wide shift register (positive
edge triggered) of clock and has a 4ns propagation delay.edge triggered) of clock and has a 4ns propagation delay.

always @(A or B)
#7 C = A + B;

always @(A or B)
#7 C = A + B;

always @(posedge clk)
begin

y1 <= #4 in;
y2 <= #4 y1;
y3 <= #4 y2;
out <= #4 y3;

end

always @(posedge clk)
begin

y1 <= #4 in;
y2 <= #4 y1;
y3 <= #4 y2;
out <= #4 y3;

end

always @(posedge clk)
y1 <= #4 in;

always @(posedge clk)
y2 <= #4 y1;

always @(posedge clk)
y3 <= #4 y2;

always @(posedge clk)
out <= #4 y3;

always @(posedge clk)
y1 <= #4 in;

always @(posedge clk)
y2 <= #4 y1;

always @(posedge clk)
y3 <= #4 y2;

always @(posedge clk)
out <= #4 y3;

2626

SutherlandSutherlandSutherland
HHH DDD LLL

Exercise 3 (continued):
Procedural Assignments
Exercise 3 (continued): Exercise 3 (continued):
Procedural AssignmentsProcedural Assignments

➤➤ Write a Verilog procedure for a “black box” ALU pipeline that Write a Verilog procedure for a “black box” ALU pipeline that
takes 8 clock cycles to execute an instruction. The pipeline takes 8 clock cycles to execute an instruction. The pipeline
triggers on the positive edge of clock. The “black box” is triggers on the positive edge of clock. The “black box” is
represented as call to a function named ALU with inputs A, B represented as call to a function named ALU with inputs A, B
and OPCODE.and OPCODE.

always @(posedge clk)
alu_out <= repeat(7) @(posedge clk) ALU(A,B,OPCODE);

always @(posedge clk)
alu_out <= repeat(7) @(posedge clk) ALU(A,B,OPCODE);

How many Verilog
statements does it
take to model an
eight stage pipeline?

