Virtex™-4
Source Synchronous Interface Advantage

High-Performance Source-Synchronous Interfaces Made Easy
We Asked Our Customers:

What are your challenges?

- Shorter design time, faster obsolescence
- More competition, increasing cost pressure
- Demanding complexity and performance
- Power consumption and thermal issues
- Signal integrity problems caused by faster I/O
- Implementing source-synchronous and memory interfaces

• Today’s seminar addresses Source Synchronous I/Fs
Agenda

• Background
• Source Synchronous Design Challenges & Solutions
• Building SFI-4.1/ SPI-4.2 applications
• Summary
Agenda

• Background
• Source Synchronous Design Challenges & Solutions
• Building SFI-4.1/ SPI-4.2 applications
• Summary
Moore Meets Einstein

- Speed doubles every 5 years...
 ...but the speed of light never changes
System Synchronous vs. Source Synchronous

Common system-synchronous clock

Dedicated source-synchronous clock for each datapath
System Interconnect Trends

Interconnect Bandwidth (Gbps)

Note: Interconnect bandwidth = # of data lines * signaling rate per line
Source-Synchronous Interfaces

Key Characteristics

• Point to point connection instead of buses

• Higher chip-to-chip speed
 – SDR: 700 MHz clock
 – DDR: 500 MHz clock
 • 1Gbps data rate

• Higher reliability
 – Minimizes problems of skew and jitter

Applications

• Networking/Telecom
 – SPI-4.2 / SFI-4 / XSBI
 – RapidIO™
 – NPSI (CSIX)
 – Utopia IV

• Memory
 – DDR SDRAM
 – DDR 2 SDRAM
 – QDR II SRAM
 – RLDRAM II
 – FCRAM II
Increasing Bandwidth Reduces System Timing Margin

Effective Data Valid Window Shrinks Faster than the Bit Period
Agenda

• Background
• Source Synchronous Design Challenges & Solutions
• Building SFI-4.1/ SPI-4.2 applications
• Summary
Challenges

1. Data capture at high speeds
2. Managing clock speeds up to 700 MHz
3. PCB layout challenge
 1. I/O placement flexibility
 2. Channel to channel skew
4. Implementing multiple interfaces
Virtex-4 I/Os Simplify Design With Built-In Critical Circuits

- **SelectIO™**
 - Frequency division
 - Bit, word alignment

- **ChipSync™**
 - Frequency multiplication

- **Clocking**
 - I/O clocks
 - Regional clocks
 - Clock-capable I/Os

ChipSync Circuitry in Every I/O!
#1: Data Capture at High Speeds

Leading and trailing edge uncertainty due to jitter and alignment
Precise Clock to Data Centering

- Virtex-4 FPGA solution with ChipSync™ IDELAY
 - “Run time” centering of data to clock during initialization
 - 64 tap delays with 75 ps resolution
 - Maximizing design margins for higher system reliability

Not available in any other FPGA, ASIC or ASSP
#2: Managing Clock Speeds Up to 700 MHz

- Clock distribution with minimal skew & duty cycle distortion
 - Up to 32 fully differential Global clock distribution networks
 - 4 fully differential IO clock distribution networks per bank

- Ability to forward clocks
 - FPGA can serve as a precision-aligned clock distributor:
 - One 500MHz clock in, 32 500MHz (LVDS) clocks out with less than 50ps of skew
#3: PCB Layout Challenges

- Layout constraints can result in trace length differences
- Propagation delays for connectors may not be available
Too Much Skew Means Words Misaligned After Bits Aligned
Easy Word Alignment with Bitslip

DATA1

DATA2

DATA3

Bitslip 3

Bitslip 2

Bitslip 1

State Machine

Source Synchronous Interfacing Made Easy, Page 18
Easy Word Alignment with Bitslip

DATA1

DATA2

DATA3

Bitslip 3

Bitslip 2

Bitslip 1

State Machine
#4: Implementing Multiple Interfaces

- Multiple Unique clock domains
- Clock management
 - Synthesis, distribution
- IO Placement
 - Breakout
 - Board floorplan
Abundant Clock Resources
Support Multiple Clock Domains

- Two Regional Clock nets per region
- 8-24 clock regions per device
- Up to 4 Clock-Capable I/Os per bank

- I/O Clock nets or general interconnect can drive Regional Clock nets
- Regional Buffer can divide I/O Clock rate

Source: Synchronous Interfacing Made Easy, Page 21
2X The Resources for Flexible Clock Management

<table>
<thead>
<tr>
<th>Feature</th>
<th>Stratix-II</th>
<th>Virtex-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock inputs: Differential</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Clock inputs: Single-ended</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Clock regions</td>
<td>4 quadrants</td>
<td>8 – 24 regions</td>
</tr>
<tr>
<td>Clock circuits</td>
<td>4 EPLLs, 8 FPLLs</td>
<td>20 DCMs + 8 PMCDs</td>
</tr>
<tr>
<td>Global clocks</td>
<td>16 total, 16 per quadrant</td>
<td>32 total, 8 per region</td>
</tr>
<tr>
<td>Regional Clocks</td>
<td>32 total, 8 per quadrant</td>
<td>16 – 48 total, 2 per region</td>
</tr>
<tr>
<td>I/O clocks</td>
<td>0</td>
<td>36 – 68, 4 per I/O bank</td>
</tr>
<tr>
<td>Total dedicated clocks</td>
<td>48</td>
<td>48 - 80</td>
</tr>
<tr>
<td>I/O Banks</td>
<td>8 general banks and up to 4 smaller banks, restricted</td>
<td>8 – 16 full featured</td>
</tr>
</tbody>
</table>

- Enables much easier implementation of multiple interfaces within the same chip
Simpler PCB Design With Flexible I/O & Banking Rules

- All Virtex-4 I/Os can be used for source synchronous design
- 9 – 17 I/O banks per device
- Stratix-II offers a restrictive choice of banks and standards for source synchronous design
Virtex-4 Source-Synchronous Resource Summary

<table>
<thead>
<tr>
<th>Resource</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChipSync blocks</td>
<td>One per I/O</td>
</tr>
<tr>
<td>Clock Regions</td>
<td>8-24</td>
</tr>
<tr>
<td>I/O Banks</td>
<td>9-17</td>
</tr>
<tr>
<td>SelectIO pins</td>
<td>240-960</td>
</tr>
<tr>
<td>Clock-Capable I/Os</td>
<td>18-68</td>
</tr>
<tr>
<td>Regional Clocks</td>
<td>16-48 (2 per Clock Region)</td>
</tr>
<tr>
<td>I/Os accessible by I/O Clock</td>
<td>95</td>
</tr>
<tr>
<td>Max Channels aligned</td>
<td>95</td>
</tr>
</tbody>
</table>
Highest Performance, Precision & Flexibility

<table>
<thead>
<tr>
<th>Feature</th>
<th>Stratix-II</th>
<th>Virtex-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O clock & data alignment</td>
<td>45° steps, clock only</td>
<td>75 ps, 64 taps for both data & clock</td>
</tr>
<tr>
<td>Parallel I/O SERDES</td>
<td>Left & right banks only</td>
<td>All I/Os</td>
</tr>
<tr>
<td>Maximum I/O speed (by speed grade)</td>
<td>622 Mbps/ 844 Mbps/ 1 Gbps (input), 1 Gbps output</td>
<td>800 Mbps/ 900 Mbps/ 1 Gbps for all inputs and outputs</td>
</tr>
</tbody>
</table>

- Finer delay tap resolution independent of process, voltage and temperature
- Allows precision clock and data alignment
- Relaxes PCB design and improves design margin
- Higher performance in slowest parts cuts system cost
Agenda

• Background
• Source Synchronous Design Challenges & Solutions
• Building SFI-4.1/ SPI-4.2 applications
• Summary
Application Example

A 10 Gigabit OC-192 Line Card

- Optics: Finisar FTRX-1411-3
- Broadcom BCM8152 OC-192 Framer
- Virtex-4 FPGA
- Control Plane Processor
- Network Processor IXP2800
- Memory
- SPI-4.2 to Serial IO Bridge
- Virtex-4 FPGA

- OC-192 SONET
- SFI-4
- SPI-4.2
- Routing tables, queues, buffer memory
- PCI Express
- XAUI
- Ethernet
- Aurora

Custom Data Processing, Traffic Manager, Framer
SFI-4 Design Made Easier With Virtex-4

• New I/O clock resources (BUFIO & BUFR) for receiver clock network
 – Easier to recover the forwarded clock for data sampling
• Dedicated ChipSync™ circuitry to achieve 700MHz SDR
 – ISERDES/OSERDES- help make serial to parallel data conversion easier
 – IDELAY- precise clock to data alignment to accurately capture data within a small data-valid window
• FIFO16 for clock domain changing
Implementing SFI-4.1 in Virtex-4™

SFI-4.1 Specification:
- Clock Frequency: 622.08MHz
- Clock Duty Cycle: 45/55
- 20-80% rise, Fall Times: 100-300ps
- Data Valid Window: 600ps

Utilization
- 63 slices / 4 BlockRAMs
- 34 LVDS I/O pairs
- 3 Global Clock Buffers / 2 BUFIO /BUFR Pairs
Implementing SFI-4 Receiver in Virtex-4

• Blocks used for receive:
 – Recovered clock and its network
 • BUFIO – High Speed Clock distribution (serial-side)
 • BUFR – Lower Speed Clock distribution (parallel-side, fabric)
 – Recovered data
 • ISERDES
 – ISERDES_ALIGNMENT_PROCESS
 • Clock-data training algorithm state machine
 – Interface-to-Core Synchronization
 • FIFO16
SFI-4 Receiver Interface

- Logic
- ISERDES
- RXCLK
- BUFIO
- Data 0
- Data 1
- Clock Capable I/O
- Data 15

ChipSync™ Block

Note: Clock Regions are not to scale

Source Synchronous Interfacing Made Easy, Page 31
Virtex-4 SFI-4 Design Features

• 700MHz SDR LVDS Transmit/Receive
• 1 clock pair, 16 data channels
• 4 to 1 Serialization / 1 to 4 De-serialization
• Clock-Data Alignment
 – Bus alignment: no training pattern required
• Can also be used for XSBI and other high-speed single-data-rate LVDS applications
ISERDES_ALIGNMENT_PROCESS

• SFI-4 uses Bus-Alignment
 – Align clock and data using IDELAY on each data lane
 – Data-agnostic, non-destructive training technique:
 • Assumptions:
 – Clock and data are edge-aligned at the pins of the FPGA
 – Clock toggling at startup for several milliseconds before data is sent
 • Train to clock (1,0 pattern)
 – Find center of sampling window for the ISERDES in the clock IOB
 – Move data to optimal location (determined for Clock ISERDES)

• Implementation fully characterized and verified
Bus Alignment: Clock Training Circuit

- RXCLKDIV
- RXCLK
- BUFIO
- BUFIO ÷ 4
- BUFR
- ISERDES
- Delay Control Logic
- FF
- IDELAY
- Clock Capable I/O

- Delay all ISERDES by the amount found through this logic
- Delayed Clock for edge analysis

Clock Training Circuit

Source Synchronous Interfacing Made Easy, Page 34
Bus Alignment Algorithm

- Begin incrementing delay on the clock until a 1 to 0 change is detected at Q output.
- Begin counting the number of tap-delays and continue incrementing until another 1 to 0 change is detected at Q1 output. This gives the data valid window width in terms of number tap-delays.
- Subtract the final tap-delay value by half the number of taps determined to equal the data valid window width.
- Increment all data channels by that amount.
- Data to clock alignment is complete.
Implementing SFI-4 Transmitter in Virtex-4

• Blocks used for transmit:
 – Transmit clock and its network
 • BUFIO – High Speed Clock distribution (serial-side)
 – This clock must come from an external reference (high quality) at full rate and be connected to a “clock-capable I/O”
 – The clock-capable I/O has a dedicated connection to the BUFIO
 • BUFR – Lower Speed Clock distribution (parallel-side, fabric)
 – Transmit data
 • OSERDES
 – Interface-to-Core Synchronization
 • FIFO16: Moves data from Core clock domain (Global Clock buffer) to the interface clock domain (BUFR)
SFI-4 Transmitter Interface

Adjacent Clock Region

Clock Region

Adjacent Clock Region

Data 0
Data 1
...
Clock Capable I/O
Data 15

Note: Clock Regions are not to scale
SPI-4.2 in Virtex-4
Xilinx SPI-4.2 Core Overview

• Fully compliant with OIF-SPI4-02.1 specification
• Ideal solution for POS, ATM, and Ethernet apps
 – Supports OC-192 line speeds - 10-Gbps and beyond
 – Supports static and dynamic alignment
 – Point-to-point interface, symmetrical operation
 – 16-bit data bus using DDR / LVDS pin pairs
 – Common FIFO interface
 • Enables easy bridging
• Supports all Virtex-4 devices
Source Synchronous Clocking

With skewed data bus

DPA can compensate up to +/- one bit period of skew

Corrected with DPA
Dynamic Phase Alignment (DPA) Advantages

- Independent sample point determination for each bit
 - Bit to Bit skew & Clock distribution skew removed from timing budget, improved system timing margin
 - Supports higher speed interfaces > 700Mbps/pin pair
 - Removes need for rigorous trace length matching on PCB
- Recovered data re-aligned to reform the data bus
 - Removes skew or sampling induced bus misalignment
 - SPI-4.2 training pattern used as a reference pattern
- Virtex-4 DPA function only requires ~360 slices
 - Less than 50% of Virtex-II/Virtex-II Pro DPA solution size
SPI-4.2 Core Implementation

SPI-4.2 Performance:
-10/11/12 622-700 Mbps Static
-10 622-800 Mbps Dynamic
-11 622-900 Mbps Dynamic
-12 622-1+ Gbps Dynamic

Resources:
-10/11/12 2700 Slices / 12 BlockRAMs
-10 3050 Slices / 12 BlockRAMs
-11 3650 Slices / 12 BlockRAMs
-12 3650 Slices / 12 BlockRAMs

4VLX25 Utilization Example:
25% of slices for Static
34% of slices for Dynamic
SPI-4.2 DPA Major Components

• ISERDES
 – Delay chain
 – Bitslip module
 – Serial to Parallel Converter (1:4)

• Data recovery (IDELAY chain) state machine
 – Moves center of data eye for each bit separately to align with the clock edge using SPI-4.2 training pattern

• Bus de-skew (Bitslip/word alignment) state machine
 – Aligns channels using SPI-4.2 training patterns
SPI-4.2 Design Made Easier With Virtex-4

- 1 Gbps/pin data rates
- Reduce FPGA resources 35% smaller
- Flexible pin-outs
- Low power
- 4+ cores in a single device
- Accurate data capture

⇒ Virtex-4 embedded SERDES
⇒ Embedded DPA
 New Sink core, 64-bit UI
⇒ Not pin-locked
 Complete pin-out freedom
⇒ Uses dedicated circuitry
⇒ Abundant clock resources
⇒ 200 MHz IDELAYCTRL clock
 Calibrated 75 ps taps
 Independent of PVT variations
Virtex-4 ML450 FPGA Source-Synchronous Interfaces Toolkit

- Supports all major differential I/O standards
 - SPI-4.2, SFI-4/XSBI, RapidIO™, HyperTransport™, NPSI (CSIX), Utopia IV
- 1 Gbps Double Data Rate (DDR) and 700 MHz Single Data Rate (SDR) performance
- Includes tools for debugging and fine tuning of SSIO designs
 - Bit error rate tester pinpoints problem channel(s) on LVDS bus
 - Link diagnostics for troubleshooting
Agenda

• Background
• Source Synchronous Design Challenges & Solutions
• Building SFI-4.1/ SPI-4.2 applications
• Summary
Virtex-4 Solves SSIO Challenges

- Ensuring reliable data capture at high speeds
 - ChipSync built into every I/O: Clock-to-data centering at “run time”
- Managing clock speeds up to 700 MHz
 - Multiple differential clock distribution networks
 - Clock forwarding with minimal skew and duty cycle distortion
- Simplifying PCB layout
 - IDELAY and BITSLIP in every I/O as part of ChipSync
 - Data agnostic bus alignment and intrusive bit alignment
- Implementing multiple interfaces
 - Abundant clock resources
 - Flexible I/O and banking rules

Source Synchronous Interfaces Made Easy
How to Get Started

• Access latest Virtex-4 source synchronous design solutions on www.xilinx.com/connectivity
 – IP Cores: SPI-4.2, RapidIO
 – Application Notes: SFI-4, XSBI
 – ML450 - Source Synchronous Interfaces Toolkit
 ▪ Board level solution including: reference designs, schematic & gerber files

• Contact your local FAE for an on-site demo

Accelerate Your Design Cycle
Backup
Can Drive DDR Output Data With One Clock

SAME_EDGE

- Simplifies setup and hold requirements
- Higher performance
- Faster time-to-performance
Versatile SelectIO™

- Every I/O is Homogeneous
 - Input & output are specified at the same frequency
- Supports 32 I/O standards including:
 - LVCMOS (3.3-V, 2.5-V, 1.8-V, 1.5-V)
 - LVPECL
 - PCI, PCI-X
 - GTL, GTL+
 - HSTL (1.8 V, 1.5 V; Classes I, II, III, IV)
 - Supports differential HSTL
 - SSTL (2.5 V, 1.8 V; Classes I, II)
 - Supports differential SSTL
 - LVDS, Bus LVDS, Extended LVDS
 - HyperTransport™ (LDT)
ISERDES Manages Incoming Data

- Frequency division
 - Data width to 10 bits
- Dynamic signal alignment
 - Bit alignment
 - Word alignment
 - Clock alignment
 - Supports Dynamic Phase Alignment (DPA)
OSERDES Simplifies Frequency Multiplication

• Two separate SERDES included
 – Data SERDES: 2, 3, 4, 5, 6, 7, 8, 10 bits
 – Three-state SERDES: 1, 2, 4 bits
 • Ideal for memories