Designing with FPGAs

Beyond Bigger, Faster, Cheaper...

Peter Alfke
Xilinx, Inc.
peter.alfke@xilinx.com

© 2000 Xilinx, Inc.
All Rights Reserved

No part of this document may be reproduced or transmitted without the
express written permission of the Director of Xilinx Customer Education.

Designing with FPGAs

• Why FPGAs ?
• Basic Architecture and New Features
• Designing for High Speed
• Designing for Signal Integrity
• Designing with BlockROMs
• Designing for Low Power
• Designing for Security
• Asynchronous Design Issues
• Tips and Tricks from the Xilinx Archives
• List of good URLs
Why FPGAs?

- Ideal for customized designs
 - Product differentiation in a fast-changing market
- Offer the advantages of high integration
 - High complexity, density, reliability
 - Low cost, power consumption, small physical size
- Avoid the problems of ASICs
 - High NRE cost, long delay in design and testing
 - Increasingly demanding electrical issues

Fast Time-to-Market, fast response to market changes

FPGA Advantages

- Very fast custom logic
 - Massively parallel operation
- Faster than microcontrollers and microprocessors
 - Much faster than DSP engines
- More flexible than dedicated chipsets
 - Allows unlimited product differentiation
- More affordable and less risky than ASICs
 - No NRE, minimum order size, or inventory risk
- Reprogrammable at any time
 - In design, in manufacturing, after installation
ASIC Problems

- ASIC user must control design details:
 - Fault coverage
 - Clock-tree structure
 - Second / third-order electrical effects
 - clock distribution delay and clock skew
 - glitch-free clock multiplexing and enable
 - cross-talk, hold-time issues
- FPGA user can concentrate on system design
 - Xilinx designers have solved the above issues

Makimoto’s Wave

- 1957 to ‘67 Standard discrete devices (transistors, diodes)
- 1967 to ‘77 Custom LSI for calculators, radio, TV
- 1977 to ‘87 Standard microprocessors, custom software
- 1987 to ‘97 Custom logic in ASICs
- 1997 to ‘07 Standard Field-Programmable devices

We are in the early part of the FPGA cycle

— Tsugio Makimoto, formerly Hitachi,
 Chairman of the Technology Board of Sony Semiconductor Network Co.
User Expectations

- Logic capacity at reasonable cost
 - 100,000 to a several million gates
 - On-chip fast RAM
- Clock speed
 - 150 MHz and above, global clocks, clock management
- Versatile I/O
 - To accommodate a variety of standards
- Design effort and time
 - synthesis, fast compile times,
 - tested and proven cores
- Power consumption
 - must stay within reasonable limits

Bigger, Faster, Cheaper FPGAs

- Millions of gates
 - >1 million RAM bits
- >200 MHz system speed,
 - 800 Mbps I/O
- From 0.3¢ to 3¢ per Logic Cell (LUT plus flip-flop)
 - Lowest for SpartanXL in high volume and simplest package
 - Highest for Virtex-II in low volume

FPGAs have evolved from glue logic to system platforms
A Decade of Progress

Three Pillars of Progress

- **Technology**
 - smaller geometries, more and faster transistors
 - better defect densities, larger chips, larger wafers, lower cost

- **Architecture**
 - system features: fast carry, memory, clock management
 - hierarchical interconnect, controlled-impedance I/O

- **Design Methodology**
 - powerful and reliable cores, faster compilation
 - modular, team-based design, internet-based tools
FPGA Technology in Production

- In step with the best microprocessors
 - 0.15 micron - 8 layer metal - up to 6 million gates
 - Up to 420 MHz clock rate, 840 Mbps interface
 - Certified cores for PCI64 etc

 - Virtex and Spartan II: 0.25 micron 5-layer metal
 - Virtex-E: 0.18 micron 6-layer metal
 - Virtex-II: 0.15 micron 8-layer metal

- Copper technology in 2000
- Copper with low-k dielectric in 2001

FPGA Architecture Today

- Logic, RAM, arithmetic, abundant interconnect
 - up to 67,000 LUTs and flip-flops
 - up to 144 dual-ported 18K-bit BlockRAM
 - up to 144 multipliers (18 x 18 bits, < 7 ns)

- Versatile I/O
 - 20 different standards, LVDS, LVPECL, etc.
 - Controlled impedance provides pc-board termination

- Clock management eliminates clock delay
 - and provides frequency synthesis and phase control

- Encrypted configuration provides security
 - Triple-DES encryption of the configuration bitstream
Design Methodology

- Design entry
 - VHDL/Verilog, schematic, verified cores
- Synthesis
 - optimized for FPGA architecture
- Timing-driven design
 - optimizes for the requested performance
- Place and route
 - significantly smarter and faster algorithms
- Team-based design
- Internet reconfiguration

Wide Range of Users and Applications

Small devices, <150K gates
- Small systems
- Small budget
- Short learning curve
- Schematic design
- Single designer
- One-stop shopping
- Foundation software
- Spartan and CPLD

Large devices, up to 6M gates
- Large Systems
- Existing EDA tools
- ASIC experience
- VHD/L/Verilog, cores
- Team-based design
- Compatibility with existing tools
- Alliance software
- Virtex and Virtex-II
Designing for High Performance

Performance Parameters I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Virtex-II-5 (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLB</td>
<td></td>
</tr>
<tr>
<td>Combinatorial LUT delay</td>
<td>0.41</td>
</tr>
<tr>
<td>Set-up time through LUT</td>
<td>0.65</td>
</tr>
<tr>
<td>Carry delay per bit</td>
<td>0.045</td>
</tr>
<tr>
<td>Clock-to-Q delay</td>
<td>0.40</td>
</tr>
<tr>
<td>BlockRAM:</td>
<td></td>
</tr>
<tr>
<td>set-up time (A,D)</td>
<td>0.30</td>
</tr>
<tr>
<td>Clock-to-out</td>
<td>2.89</td>
</tr>
<tr>
<td>Input</td>
<td></td>
</tr>
<tr>
<td>Data pin to clock pin set-up</td>
<td>0.78</td>
</tr>
<tr>
<td>Data in delay</td>
<td>0.70</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Data to output pad</td>
<td>2.45</td>
</tr>
<tr>
<td>Clock-to-output pad</td>
<td>3.45</td>
</tr>
</tbody>
</table>
Performance Parameters II

<table>
<thead>
<tr>
<th>Internal register-to-register</th>
<th>Virtex-II-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-bit adder</td>
<td>317 MHz</td>
</tr>
<tr>
<td>18 x 18 multiplier</td>
<td>155 MHz</td>
</tr>
<tr>
<td>24-bit synchronous counter</td>
<td>305 MHz</td>
</tr>
<tr>
<td>64-bit synchronous counter</td>
<td>190 MHz</td>
</tr>
<tr>
<td>DLL max output frequency</td>
<td>420 MHz</td>
</tr>
</tbody>
</table>

Package-pin to package pin delays

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>64-bit decode</td>
<td>6.8 ns</td>
</tr>
<tr>
<td>32 : 1 multiplexer</td>
<td>7.8 ns</td>
</tr>
<tr>
<td>One-LUT combinatorial function</td>
<td>4.5 ns</td>
</tr>
</tbody>
</table>

Virtex-II parameters are preliminary and conservative

Designing for High Speed

Understand the architecture, strength and limitations

- LUTs, LUT-RAMs, SRL16, Carry
- Registered I/O, Output 3-state control flip-flop
- Longlines, 3-state buffers,
- Synchronous dual-ported BlockRAM
- Global clocks with glitch-free enable and input multiplexer
- DLLs, Digital Frequency Synthesizer, Phase control
- Constant-coefficient multipliers in LUTs
- 18x18 multipliers in Virtex-II,

The synthesizer cannot do all your homework
Provide High-Level Floorplanning

Intelligent pin assignment
prevents routing congestion and poor performance

Natural structure:
Data flows horizontally, Control flows vertically
Vertical adders and counters, carry going upwards

Pick the best I/O standard, observe banking rules

Place & route tool should not do all your homework

High Level Floorplanning

High Level Floorplanner allows definition of:
- Module area
- Location of device pins
- Location of module ports

Reduces Compile Time
Increases Performance
Design Synchronously, Use Global Clocks

- Up to 16 Global Clocks are available
 - Very low skew on these clock nets
- DLL eliminates clock distribution delay
 - Inside the chip, or even on the pc-board
- Do not gate the clock, use CE instead
 - But you may need clock gating for lowest power
 - Virtex-II has glitch-free clock gate and clock mux
- Use Carry for adders, counters and comparators
 - Superior speed, less logic, forces vertical orientation
- Use predefined cores
 - They have been tested and are guaranteed to work at speed

Use Global Buffers to Reduce Clock Skew

- Global buffers are connected to dedicated routing
 - Global clock network is balanced to minimize skew
- All Xilinx FPGAs have global buffers
 - XC4000 and Spartan have 8
 - Virtex and Spartan-II have 4
 - Virtex-II has 16 BUFGs with glitch-free input mux
- You can always use a BUFG symbol and the software will choose an appropriate buffer type
 - All major synthesis tools can infer global buffers onto clock signals that come from off-chip
Why Use Timing Constraints?

- The implementation tools do NOT try to find the placement and routing that achieves the fastest speed — they just try to meet your performance expectations
- YOU must communicate your expectations — through Timing Constraints
- Timing Constraints improve performance — by placing logic closer together and shortening the routing

Timing constraints are the best high-level tool to achieve guaranteed performance

More About Timing Constraints

- Timing constraints define your performance objectives
 — Tight timing constraints increases compile time
 — Unrealistic constraints causes the Flow Engine to stop
 — Logic Level Timing Report tells whether constraints are realistic
- After implementation,
 — review the Post Layout Timing Report to determine if performance objectives were met
- If your constraints were not met,
 — use the Timing Analyzer to determine the cause
Designing for Signal Integrity

Transmission Lines

- Long traces are transmission lines, they can ring
 - "transmission line" if round trip > transition time
 - "lumped-capacitance" if round trip < transition time
- Signal delay on a pc-board:
 — 140 to 180 ps per inch (50 to 70 ps per cm)
- Avoid reflection by terminating the line
 — either series termination at the source
 — or parallel termination at the destination
- Longest trace that is a lumped-capacitance:
 — 3 inches max for a 1-ns transition time (7.5 cm)
 — 6 inches max for a 2-ns transition time (15 cm)
Evolution

<table>
<thead>
<tr>
<th>Year</th>
<th>Max Clock Rate (MHz)</th>
<th>Min IC Geometry (µ)</th>
<th>Number of IC Metal Layers</th>
<th>PC Board Trace Width (µ)</th>
<th>Number of Board Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2000</td>
<td>1-2</td>
</tr>
<tr>
<td>1980</td>
<td>10</td>
<td>5</td>
<td>2</td>
<td>500</td>
<td>2-4</td>
</tr>
<tr>
<td>1995</td>
<td>100</td>
<td>0.5</td>
<td>3</td>
<td>100</td>
<td>4-8</td>
</tr>
<tr>
<td>2010 (?)</td>
<td></td>
<td>0.05</td>
<td>10</td>
<td>25</td>
<td>8-16</td>
</tr>
</tbody>
</table>

Every 5 years:
- System speed doubles, IC geometry shrinks 50%

Every 7-8 years: PC-board min trace width shrinks 50%

Moore Meets Einstein

- Speed Doubles Every 5 Years...
- ...but the speed of light never changes
Designing for Signal Integrity

- Devices need good Vcc bypassing
 - Bypass capacitor is the only source of dynamic current
- Output driver needs IBIS models
 - http://www.xilinx.com/support/troubleshoot/htm_index/sw_ibis.htm
- User needs understanding of transmission line effects
 - Characteristic impedance, reflections, dV/dt
 - Series termination, parallel termination,
- Model the pc-board with HyperLynx
 - Multi-Layer with undisturbed ground/power planes
 - Controlled-impedance signal lines (50 to 75 Ohms)
- Website:

Signal Integrity Tools

- IBIS models
 - http://www.xilinx.com/support/troubleshoot/htm_index/sw_ibis.htm
- HyperLynx
- Fast oscilloscope and fast probes
 - Beware of slow scopes measuring **1 ns** rise time:
 - A **1 GHz** scope with a **1 GHz** probe displays **1.2 ns** rise time
 - A **250 MHz** scope and probe displays: **3.0 ns** rise time
- Measure eye patterns
 - Use LFSR to generate pseudo-random sequence
- Spectrum analyzer
 - Measure the effect of decoupling capacitors, etc.
- Website:
 - http://www.xilinx.com/support/techxclusives/signals-techX5.htm
Power Supply Decoupling

- CMOS current is dynamic
 - Icc current spike on every active clock edge
- Peak current can be 5x the average current
 - Instantaneous current peaks can only be supplied by decoupling capacitors
- Use one 0.1 uF ceramic chip capacitor per Vcc pin
 - Low L and R are more important than high C
 - Double up for lower L and R if necessary
 - Use direct vias to the supply planes, extremely close to the power-supply pins
 - On-chip plus package capacitance is ~0.01µF
Tricks of the Trade

- Reduce the output strength
 - LVTTL and LVCMOS offer 2, 4, 6, 8, 12, 16, and 24 mA
- Use SLOW attribute where available
 - Increases transition time
 - especially when driving transmission lines
- Explore different I/O standards
 - Different supply voltages, input thresholds
 - Unidirectional, bidirectional, bus-oriented, differential
- Reduce fan-out and load capacitance
- Add virtual ground to alleviate SSO problems
 - Ground output pin inside and outside, give it max strength

Testing for Performance and Reliability

- Manipulate circuit speed for testing purposes:
 - Hot and low Vcc = slow operation
 - Cold and high Vcc = fast operation
- If it fails hot: insufficient speed
 - Use a faster speed grade
 - Modify the design, add pipelining
- If it fails cold: signal integrity and hold time issues
 - Look for clock reflections
 - Look for excessive internal clock delays
 - Look for decoding spikes driving clocks
 - Look for “dirty asynchronous tricks”
Model and Measure

- **Model** device, package, pc-board
 - Avoids pc-board re-spin
- **Measure** performance and noise margin
 - Avoids field disasters
- **Do not panic:**
 - It’s only 1 and 0, High and Low that count
 - Noise immunity takes care of the rest
- **References:**
 - Classes: see www.hyperlynx.com, then go to TRAINING
 - Book: Johnson & Graham High-Speed Digital Design
- **Website:**
 - www.xilinx.com/support/techxclusives/techX-home.htm

Designing for Low Power
Designing for Low Power Consumption

- To extend battery life
- To reduce chip temperature and cooling requirements
 - $T_{j_{\text{max}}} = 125$ degree C (150 degree C in ceramic)
 - Delays increase 0.35% / degree C above the guaranteed 85 degree C junction temperature
- Use the free Xilinx Power Estimator
 - http://www.xilinx.com/cgi-bin/powerweb.pl

Power is proportional to CV^2f

Minimize all three!

Designing for Low Power

- Clock Power + I/O Power + Logic Power
- Clock Power
 - Minimize # of high-speed clock nets
 - Use DLLs for phase-aligned sub-clocks
 - CE does not reduce clock power
- I/O power
 - Avoid wasted current in input buffers
 - Use fast, full-swing input signals
 - Use output registers to avoid output glitches
Low Logic Power

- Control Vcc tightly
 - Power is proportional to Vcc2
- Minimize logic transitions and glitches
- Optimize counters:
 - Gray and Johnson are best
 - Binary counters double the power
 - Linear Feedback Shift Register are even worse
- Minimize internal node capacitance
 - Use aggressive timespecs
 - Design for the highest speed possible, even if not needed
 - This assures lowest interconnect capacitance and provides the lowest power at the lower clock frequency

Thermal Solution

- Remote Die Sensor
 - Specially designed to be used with the maxim MAX1617
 - Simple 2-pin interface with no calibration required
 - Provides two channels
 - FPGA die temp reported from -40 to +125 degr.C (+/- 3 degr.C)
 - Programmable over-temperature & under-temp. alarms
 - Originally intended for the Pentium II

Precise thermal management is now easy
Configuration and Bitstream Security

Configuration Modes: Serial Modes

- **Data is loaded one bit per CCLK**

- **Master serial**
 - FPGA drives configuration clock (CCLK)
 - FPGA provides all control logic
 - Note that CCLK is also an input!

- **Slave serial**
 - External control logic generates CCLK
 - Microprocessor
 - Xilinx download cable
 - Another FPGA

- Master serial
 - External control logic generates CCLK
 - Microprocessor
 - Xilinx download cable
 - Another FPGA
Configuration Modes: Byte-Wide SelectMAP Mode

- **Slave SelectMAP**
 - CCLK is driven by external logic
 - Data is loaded one byte per CCLK

- **Master SelectMAP**
 - CCLK is driven by the Virtex II FPGA
 - Data is loaded per CCLK

New to Virtex II by popular demand...
Configuration Modes: Boundary Scan Mode

- External control logic required
- Control and data drive the boundary scan pins (TDI, TMS, TCK)
- Data is loaded bit-serially one bit per TCK

Designing for Security

- Configuration bitstream can be intercepted
 - But not interpreted or reverse-engineered
 - Some users are concerned about IP theft
- Virtex-II offers security through encryption
 - Triple-DES with 3 x 56 bits
 - Triple-DES has never been cracked
 - Incoming bitstream is decrypted on-the-fly
 - Keys are kept alive by an external battery (1.0 to 3.6 V)
 - Extremely low current consumption, <100 nA
 - Battery must be changed while Vcc is alive
Asynchronous Issues

Understanding Asynchronous Design Issues

- Most systems operate synchronously inside
 - But asynchronous inputs are a fact of life
- Occasionally, an asynchronous input will cause a flip-flop to go metastable
 - This is a rare, but unavoidable, probabilistic event
- Solution:
 - Faster flip-flops recover faster
 - Double-synchronization reduces probability

Awareness and understanding are crucial
Setup and Hold Time Violations

- Violations occur when the flip-flop input changes too close to a clock edge
- Three possible results:
 - Flip-flop clocks in old data value
 - Flip-flop clocks in new data value
 - Flip-flop output becomes metastable

Metastability is a rare, random event

Metastability

- Caused by asynchronous data input
 - Violates set-up time requirement
 - Usually gets synchronized in the flip-flop without problem
- But if data changes within a tiny set-up time window
 - Then the flip-flop can go metastable
 - Resulting in unpredictable delay to reach stable 1 or 0
- The 0 vs. 1 uncertainty is irrelevant
 - The slightest timing change would give a correct 1 or 0
- The unpredictable delay is the problem
 - It can violate set-up times in the system, causing erratic operation or even crashes
Mean Time Between Failure

- Measure MTBF = f (extra delay)
 - Assume a given clock and data rate
- MTBF is exponential function of delta t
 - Slope determined by gain-bandwidth product
- Modern CMOS resolves extremely fast
 - But modern system have little time slack
- The problem is as unavoidable as death and taxes
 - But probability can be reduced by design

Metastability Data

- Website (will be updated in March 2001):
Synchronization Circuit

Moving Data Across Asynchronous Clock Boundaries

- Worst-case timing happens, sooner or later
- Murphy does not sleep!
- Never use parallel flip-flops to synchronize an asynchronous input signal
 - Always synchronize at a single point
- Don’t try to synchronize parallel data
 - Use the methods described on the following slides
 - The problem is data corruption, not metastability
- Use cascaded stages to combat metastability
- Website:
Moving Parallel Data with Asynchronous Handshake

- Transmitter: Data available raises Ready, sets Flag
 — Receiver scans F, accepts parallel data, raises Acknowledge
- Acknowledge sets flip-flop, which resets Flag
 — Benign race condition between flip-flops
- Both sides must observe and obey the Flag

Moving Parallel Data without Handshake

- If Rx is much faster than Tx:
- Double-buffer the Data and compare
 — If both buffers are identical: good data
 — If both are not identical: wait
- Identity detector can also be transition detector
Transfer Counter Value without Handshake

- Comparator detects “reasonable” difference
- Rejects absurd differences only

Moving Data at Full Speed

- **200 MHz** asynchronous FIFO in Virtex-II
 - 16K deep, n bits wide
 - to
 - 512 deep, 36n bits wide
- Uses n BlockRAMs for data storage
- Only eight to eleven CLBs for control

See new app note in March 2001
Moving Data at Full Speed

- **200 MHz asynchronous FIFO in Virtex**
 - 4K deep, n bits wide
 - to
 - 512 deep, 8n bits wide
- Uses n BlockRAMs for data storage
- Only 12 to 16 CLBs for control

See new app note in March 2001

Asynchronous FIFOs

- Parameters: width, depth, clock frequency
- Data path = dual-ported BlockRAM
- Control = 2 addresses + Full, Empty
- Synchronous control is very simple:
 - Two counters + trivial state machines
- Asynchronous control is very tricky
 - Asynchronous addresses must control FULL and EMPTY

Many (most?) FIFOs are asynchronous
Full and Empty Control

Identity-compare write and read addresses
— identical addresses mean either Full or Empty

Two problems:

• Comparing two asynchronously changing binary addresses will cause glitches

• Distinguish between Full and Empty
 — both are indicated by address identity

FIFO Block Diagram
Gray-Coded Addresses

- Only one bit per address changes any time
 - no glitches from the identity comparator
- Implementation:
 - Build binary counter
 - Generate XOR of two adjacent D-inputs
 - Feed these XORs to a register = Gray code
 - MSB binary = MSB Gray
- Advantage:
 - Very fast and easily expandable, binary as a bonus
 - Takes advantage of the fast carry structure

No pipeline delay, but twice the binary counter cost

Separate Full from Empty

- Divide address space into 4 quadrants, defined by the counter MSBs
 - This works in binary as well as in Gray
- Monitor the quadrant relationship of the write and read address counters
- Set a flag to distinguish between potentially going Full or Empty
 - include this in the address identity comparator
Synchronize to the Proper Clock

- FULL must be synchronous to write clock
 - Read is not concerned with fullness
- EMPTY must be synchronous to read clock

- Leading edges are naturally synchronous:
 - Full is the result of a write clock
 - Empty is the result of a read clock

Trailing edges are caused by the other clock

Synchronizing the Trailing Edges

- Combinatorial FULL is the result of a write.
 - Use it to asynchronously preset a flip-flop.
 - Use it also as D-input, clocked by the write clock.

This synchronizes both edges to the write clock.
Do the Same with EMPTY

- EMPTY can share the identity decoder
 - Then individually gated by Direction

- You can also put the binary outputs to good use:
 - they can provide “dipstick” indication:
 - Subtract, but beware of glitches.

Asynchronous FIFO in Virtex

- 180 MHz asynchronous operation
 - 4K deep, 1n bits wide
 - 2048 deep, 2n bits wide
 - 1024 deep, 4n bits wide
 - 512 deep, 8n bits wide

- Uses n BlockRAMs plus 16 to 20 CLBs
 - BlockRAMs for data storage
 - CLBs for address counters, direction detection, EMPTY and FULL detection across asynchronous boundary
Asynchronous FIFO in Virtex-II

- **200 MHz asynchronous operation**
 - 16K deep, n bits wide
 - 8K deep, 2n bits wide
 - 4K deep, 4n bits wide
 - 2048 deep, 9n bits wide
 - 1024 deep, 18n bits wide
 - 512 deep, 36n bits wide

- **Uses n BlockRAMs plus 8 to 11 CLBs**
 - BlockRAMs for data storage
 - CLBs for address counters, direction detection, EMPTY and FULL detection across asynchronous boundary

Asynchronous Clock MUXing

- **This circuit waits for the present clock to go Low**
 - Output then stays low until the new clock is Low

Guaranteed to switch glitch-free, no runt pulses

Virtex-II Clock Multiplexer

- Each global clock buffer is a mux
 - can switch between 2 clock sources
 - configured for rising or falling edge
- Can also do clock gating (enable)

Dangerous stuff, but these circuits do it safely

Conclusions

- Asynchronous data transfer is dangerous
 - _but not if you understand the issues and know how to design around them_
- Clock gating is unhealthy
 - _but not if you use smart circuits_
- Metastability can hurt very badly
 - _but only if inside a very tight timing budget_

_Modern CMOS resolves very fast (within a few ns)
Tips and Tricks from the Xilinx Archives

Schmitt Trigger

- Hysteresis = 10% of Vcc
RC Oscillator

- Wide frequency range, Hz to MHz
 - 100 Ohm to 100 kilohm
 - 100 pF to 1 uF
- Reliable start-up is absolutely guaranteed
- Oscillator can be started and stopped internally

Coping with Clock Reflections

- Problem: Double pulse on the active edge
- Solution: Delay \(D \), to prevent the flip-flop from toggling soon again
Coping with Clock Reflections

- Problem: Double pulse on the inactive edge
- Solution: Disable flip-flop, by using the clock level

5V-Tolerant 3.3V Output
Driving 5V CMOS-Level Input

Inside FPGA PC-Board

SIGNAL_OUT OBUF CHIP_OUT

1kΩ

To 5V CMOS input

5V

© 2000 Xilinx, Inc. All Rights Reserved
No part of this document may be reproduced or transmitted without the express written permission of the Director of Xilinx Customer Education.
List of Good URLs

Xilinx:
- www.xilinx.com
- www.xilinx.com/support/sitemap.htm
 — www.xilinx.com/support/techxclusives/techX-home.htm
 — www.xilinx.com/support/troubleshoot/psolvers.htm

General FPGA-oriented Websites:
- www.fpga-faq.com
- www.optimagic.com

Newsgroup: comp.arch.fpga

All datasheets: www.datasheetlocator.com

Search Engine (personal preference): www.google.com

Beyond Bigger, Faster, Cheaper

On-chip RAM
Efficient Arithmetic
Intelligent Clock Management
Multi-standard I/O, Built-In Termination

FPGAs have evolved from glue logic to cost-effective system platforms